

Do topological defects in quadrupole insulators host quantized fractional charges?

Isidora Araya Day, Anton Akhmerov, Dániel Varjas

Topological defects in a double-mirror quadrupole insulator displace diverging charge

The BBH model, a quadrupole insulator

(a) BBH model. (b) Phase diagram with 4 bulk-gap closing points.

- * Quantized 1/2 corner charges in topological phase.
- * Disclinations were reported to host quantized fractional charges too.
- * The phase diagram allows us to create a parametric defect.

Two defects with expected 1/2 charge

- * Triangle at the disclination has 3/2 electrons at half-filling.

 * Parametric defect has a half-integer charge due to odd-sized

Hypothesis: Local reflection symmetries of the BBH model protect defect charge quantization.

Removing sublattice symmetry

- * Sublattice symmetry enforces charge quantization.
- * We add next-nearest neighbor hoppings $\ \delta \neq 0$ to break sublattice symmetry.

Sublattice symmetry
$$- 4 = 2 \sum_{E_l < 0} \sum_{\alpha = 1}^4 |\Psi_{\alpha l}^{ij}|^2 + \sum_{E_l = 0} \sum_{\alpha = 1}^4 |\Psi_{\alpha l}^{ij}|^2$$
 condition

cluster of unit cells.

 $h_{\text{ot}}(R) = \sum_{l=1}^{R/2} \left(\rho_{ij} - 2\right) = \frac{1}{2} \sum_{l=1}^{R/2} \sum_{l=1}^{2} \sum_{l=1}^{4} |\Psi_{\alpha l}^{ij}|^2 = \frac{N_0}{2}$

Result: Divergent defect charge in the absence of sublattice symmetry

Breaking sublattice symmetry displaces positive and negative charges around the defect.

To study charge convergence, we introduce

$$q(R) = \sum_{i=i=0}^{R/2} \left| \rho_{ij} - 2 \right|$$

Parametric, $\delta = 0$

Disclination, $\delta = 0$

Disclination, $\delta = 0.1$

Defect charge is

of 1/2.

constrained to multiples

Local charge density with (a-b) and without (c-d) sublattice symmetry.

Defect charge is not quantized

- * Local charge density decays as $1/r^2$.
- * The origin of the previously reported charge quantization was sublattice symmetry.

Parametric, $\delta = 0.1$

(a) Total charge is 1/2 only with sublattice symmetry. (b) Defect charge diverges otherwise. (c) Defect charge converges exponentially with sublattice symmetry. (d) Without it, the charge density decays as $1/r^2$.

- [1] Benalcazar, W.A., Bernevig, B.A. and Hughes, T.L. Quantized electric multipole insulators. Science, 357 (2017).
- [2] Peterson, C.W., Li, T., Jiang, W. et al. Trapped fractional charges at bulk defects in topological insulators. Nature 589, 376–380 (2021).
- [3] Khalaf, E., Benalcazar, W.A., Hughes, Tl.L., Queiroz, R. Boundary-obstructed topological phases. Phys. Rev. Research 3, 013239 (2021).

