Tailoring the band structure of twisted double bilayer graphene with pressure

Bálint Szentpéteri

Budapest University of Technology and Economics

Nano Letters, 21, 20, 8777-8784 doi: 10.1021/acs.nanolett.1c03066

Motivation

Twisted double bilayer graphene

• Highly tunable system:

- > Electron density
- ➤ Electric field
- ➤ Twist angle
- > Pressure

Pressure

- Tunes the interlayer distance
- Enhance the coupling strength between the layers

Pressure cell

- Unique set-up
- Piston-cylinder hydrostatic pressure cell
- Can press nanodevices
- It doesn't need any special sample preparation.

B. Fülöp et al., J. Appl. Phys. 130 (2021)

Tuning the interlayer coupling

Demonstration

• The effect of weak localization can be used to measure the proximity SOC

strength

• Weak anti-localization signal increases with pressure

SOC strength increases with pressure

B. Fülöp et al. npj 2D Mater Appl **5**, 82 (2021)

Outline

• Twisted double bilayer graphene

• Transport measurements

• Thermal activation measurements

Twisted double bilayer graphene

- Small rotation angle (1.07°) between the BLGs
- Hybridization leads to formation of avoided crossings and formation of flat bands
- Displacement field also tunes the spectrum

12/6

Twisted double bilayer graphene Transport measurements

• Dual gated structure to tune *n* and *D* separately

• D opens a gap at the CNP

20

Twisted double bilayer graphene Transport measurements

• Dual gated structure to tune *n* and *D* separately

• D opens a gap at the CNP

• Pressure decreases the moiré gaps

Thermal activation measurements

- Gap values can be determined from thermal activation measurements
- Gaps can be fully closed with pressure

Summary

TDBG is very sensitive to pressure

- Single-particle moiré gaps can be fully closed
- Even a simple model could be used to predict the behavior of pressure at certain twist angles

Pressure cell could be used to study twisted structures

- Universal sample holder
- Open to collaborate to study new twisted structures

Acknowledgement

Péter Makk, Szabolcs Csonka, Albin Márffy, Bálint Fülöp, Endre Tóvári, Andor Kormányos

Sample from: Peter Rickhaus, Folkert K. de Vries

SOC project in collaboration with:

ETH zürich

Christian Schönenberger, Simon Zihlmann

Zero n & D magnetic field dependence

• At n=0, D=0 a gap opens with B, which decreases by further increasing B

• Close at different Φ/Φ_0 at different pressures

- 1. For a Chern-insulator \rightarrow gap closes at $\Phi/\Phi_0 = 1/|C|$
- 2. Decrease of the correlation ← Burg et al., arXiv 2006.14000 (2020)

Decrease of the correlation

Correlated insulator state at half filling at finite D:

- Spin polarized
- No sign of it at p = 2 Gpa

