

Controlling graphene-hBN rotational alignment

A critical parameter for graphene-based moiré heterostructures

Rupini Kamat

Goldhaber-Gordon Group Stanford Physics Department Stanford Institute of Materials and Energy Sciences

A very special magnet

[1] A. Sharpe, et al. Science 365.6453 (2019): 605-608

Goldhaber-Gordon Group, Stanford

A very special magnet

[1] A. Sharpe, et al. Science 365.6453 (2019): 605-608 Goldhaber-Gordon Group, Stanford

Spin Ferromagnet

Orbital Ferromagnet

A very special magnet

[1] A. Sharpe, et al. Science 365.6453 (2019): 605-608 Goldhaber-Gordon Group, Stanford

Orbital Ferromagnet

Another hBN-aligned TBG sample

[3] M. Serlin, et al. *Science* 367.6480 (2020): 900-903 Young Group UCSB

Confirmation/extension!

[3] M. Serlin, et al. *Science* 367.6480 (2020): 900-903 Young Group UCSB

- ❖ 3 years and hundreds of MATBG samples later...
 Still only 2 ferromagnetic TBG samples with this phase diagram
- ❖ Intentionally creating + characterizing a graphene-hBN "hetero moire" has significant challenges

- 3 years and hundreds of MATBG samples later...
 Still only 2 ferromagnetic TBG samples with this phase diagram
- Intentionally creating + characterizing a graphene-hBN "hetero moire" has significant challenges
 - cannot tear/cut and stack as in TBG

- ❖ 3 years and hundreds of MATBG samples later...
 Still only 2 ferromagnetic TBG samples with this phase diagram
- Intentionally creating + characterizing a graphene-hBN "hetero moire" has significant challenges
 - cannot tear/cut and stack as in TBG
 - > aligning straight edges ambiguous

[4] Y. You, et al. *Applied Physics Letters* 93.16 (2008): 163112. Shen ZeXiang Group, NTU

	ZZ	AC
ZZ	✓	X
AC	X	√

- ❖ 3 years and hundreds of MATBG samples later...
 Still only 2 ferromagnetic TBG samples with this phase diagram
- Intentionally creating + characterizing a graphene-hBN "hetero moire" has significant challenges
 - cannot tear/cut and stack as in TBG
 - ➤ aligning straight edges ambiguous
 - ➤ no quick check of resulting structure

[4] Y. You, et al. *Applied Physics Letters* 93.16 (2008): 163112. Shen ZeXiang Group, NTU

	ZZ	AC
ZZ	✓	X
AC	X	√

- ❖ 3 years and hundreds of MATBG samples later...
 Still only 2 ferromagnetic TBG samples with this phase diagram
- Intentionally creating + characterizing a graphene-hBN "hetero moire" has significant challenges
 - cannot tear/cut and stack as in TBG
 - aligning straight edges ambiguous
 - > no quick check of resulting structure

Need greater control.

Strategy: 1) Characterize straight edges in flakes as ZZ or AC prior to stacking 2) Characterize moiré period after stacking.

	ZZ	AC
ZZ	✓	X
AC	X	✓

Graphene Orientation: Polarized Raman

- Armchair edges can be quickly identified by Raman spectroscopy
- Scattering off armchair edges gives rise to otherwise forbidden D peak in pristine graphene

Graphene Orientation: Polarized Raman

- Armchair edges can be quickly identified by Raman spectroscopy
- Scattering off armchair edges gives rise to otherwise forbidden D peak in pristine graphene

Raman Characterization of Graphene Orientation: An Example

Raman Characterization of Graphene Orientation: An Example

Raman Characterization of Graphene Orientation: An Example

hBN Orientation: Second Harmonic Generation

Non-centrosymmetric materials pumped by laser light at frequency f emit a second harmonic signal at 2f

hBN Orientation: Second Harmonic Generation

- Non-centrosymmetric materials pumped by laser light at frequency f emit a second harmonic signal at 2f
- "Petals" of polarization-resolved SHG shows orientation of B-N bonds

[6] Y. Li, et al. *Nano letters* 13.7 (2013): 3329-3333. Heinz Group, Stanford

hBN Orientation: Second Harmonic Generation

- Non-centrosymmetric materials pumped by laser light at frequency f emit a second harmonic signal at 2f
- "Petals" of polarization-resolved SHG shows orientation of B-N bonds

[6] Y. Li, et al. *Nano letters* 13.7 (2013): 3329-3333. Heinz Group, Stanford

[7] L. McGilly, et al. *Nature Nanotechnology* 15.7 (2020): 580-584. Dean Lab, Columbia

Rapid verification of alignment + direct measurement of moire done via PFM, which measures local electromechanical response of material

[7] L. McGilly, et al. *Nature Nanotechnology* 15.7 (2020): 580-584. Dean Lab, Columbia

Rapid verification of alignment + direct measurement of moire done via PFM, which measures local electromechanical response of material

[7] L. McGilly, et al. *Nature Nanotechnology* 15.7 (2020): 580-584. Dean Lab, Columbia

Rapid verification of alignment + direct measurement of moire done via PFM, which measures local electromechanical response of material

Early results confirm successful alignment using pre-stack characterization!

[7] L. McGilly, et al. *Nature Nanotechnology* 15.7 (2020): 580-584. Dean Lab, Columbia

Rapid verification of alignment + direct measurement of moire done via PFM, which measures local electromechanical response of material

Early results confirm successful alignment using pre-stack characterization!

Precise alignment remains a challenge, moire period ~7.2 nm moire period → 1.69 deg twist angle

Outlook

Outlook

❖ Process flow of pre-stack characterization/stacking/post-stack characterization enables new degree of control AND verification of Gr-hBN moiré

Combining these tools can enable:

- 1) reliable reproduction of novel correlated electron states (like orbital ferromagnetism in TBG) that may depend on this supermoiré
- 1) systematic exploration of device behavior as a function of graphene-hBN alignment.

[8] J. Shi, et al. *Physical Review B* 103.7 (2021): 075122. MacDonald Group, UT Austin

 θ_{GBN} = -0.6°

Acknowledgments

Goldhaber-Gordon Group

Sandia National Labs:

Aaron Sharpe

Goldhaber-Gordon Group:

Greg Zaborski, Mihir Pendharkar, Marc Kastner, David Goldhaber-Gordon

Tony Heinz Group:

Jenny Hu, Tony Heinz

NIMS:

Takashi Taniguchi, Kenji

Watanabe

Questions?

References

- [1] Sharpe, Aaron L., et al. "Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene." Science 365.6453 (2019): 605-608.
- [2] A. H. MacDonald," Bilayer graphene's wicked, twisted road", *Physics* 12, 12 (2019).
- [3] Serlin, M., et al. "Intrinsic quantized anomalous Hall effect in a moiré heterostructure." Science 367.6480 (2020): 900-903.
- [4] You, YuMeng, et al. "Edge chirality determination of graphene by Raman spectroscopy." Applied Physics Letters 93.16 (2008): 163112.
- [5] Cancado, L. G., et al. "Influence of the atomic structure on the Raman spectra of graphite edges." Physical review letters 93.24 (2004): 247401.
- [6] Li, Yilei, et al. "Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation." *Nano letters* 13.7 (2013): 3329-3333.
- [7] McGilly, Leo J., et al. "Visualization of moiré superlattices." Nature Nanotechnology 15.7 (2020): 580-584.
- [8] Shi, Jingtian, Jihang Zhu, and A. H. MacDonald. "Moiré commensurability and the quantum anomalous Hall effect in twisted bilayer graphene on hexagonal boron nitride." *Physical Review B* 103.7 (2021): 075122.