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The Problem

A Flat Band in a Moiré System
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The Problem

A Flat Band Fractional filling
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Fractional band filling -> non integer filling per Moiré unit cell



The Problem

A Flat Band Add interactions at
fractional band fillings
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What is the underlying phase ?
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Fractional Chern insulators, Charge density waves, Fermi
Liquids, .... etc. ??7?



Fractional Chern Insulators, why bother?

* Broadly fractional Chern insulators
are lattice analogues of
the fractional quantum Hall effect.
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Fractional Chern Insulators, why bother?

* Overcomes challenges with the conventional FQHE experimental setup!

Very strong magnetic
fields

i Extremely low
| temperatures

T < 1 Kelvin
|IB| ~ 10 — 30 Tesla



Fractional Chern Insulators, why bother?

No magnetic field required!

* Interactions on the lattice scale are greater than the magnetic length scale -> Higher

energy gap!
* A step towards high temperature topological phases.

e More than FQHE!

* Higher Chern number FCls are possible -> no mapping to decoupled Landau levels!,
PRL, 109, 186805 (2012)



Trilayer Graphene aligned with Boron Nitride
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* Correlated Insulators and superconductors!
Chen et al. Nature 572, (2019)



Trilayer Graphene aligned with Boron Nitride

Phys. Rev. Lett. 122, 016401 (2019)

U =20meV
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What happens when the red band is fractionally filled?
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Trilayer Graphene aligned with Boron Nitride

U = 20 meV

0.100 v \
* Are FCI states possible? 0.0757
0.050 1

. . |
* No numerical evidence! 0.025 _/\/\,_\/
—0.025 -

—0.050 1
—0.075 - /
~0.100 . A .

T

K’ K I M

e Why?

Energy (eV)




Another perspective

TLG-hBN C = 3 —En(k)
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Unlike Landau levels!



Another perspective

H proj — Z Vk1k2k3k4 CLI C;Lz Cks Cky TLG-hBN C En(k
kikoksky - —’ o }IL(Q(%
0.02 -~ (a) | 116
Particle-Hole Transformation, 0.01 4 ! 11'2
_'. o -[- -l- < 10.8
HPI"OJ = Z L, (k)dkdk i Z Vk1k2k3k4 dkl dkz dk3 dk4 < 0.00 1 10.4
k kikokszky
—0.01 A 10.0
En(k) = > (Viekwk + Vikkk — Viwkk — Viekkk' ) .02 4 9.6
T T T 9.2
—0.02 0.00 0.02
What role does Fj, (k) play? ke
Is there a quantity that E, (k) correlates with? . i .
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rivial example:

TLG-hBN at one hole filling
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(n(k)) — <CIT<Ck> is electron occupation in the many-body ground state obtained from exact diagonalization



Emergent Fermi Liquids in TLG-hBN

TLG-hBN C =3
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(n(k)) = (CLC}J is electron occupation in the many-body ground state obtained from exact diagonalization

Eh(k) is the renormalized single-hole energy after Hartree-Fock mean field of the interaction



Emergent Fermi Liquids in TLG-hBN

TLG-hBN C =3
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(n(k)) = (CLC}J is electron occupation in the many-body ground state obtained from exact diagonalization

Eh(k) is the renormalized single-hole energy after Hartree-Fock mean field of the interaction



Emergent Fermi Liquids in TLG-hBN

TLG-hBN C =3
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(n(k)) = (CLC}J is electron occupation in the many-body ground state obtained from exact diagonalization

Eh(k) is the renormalized single-hole energy after Hartree-Fock mean field of the interaction



Emergent Fermi Liquids in TLG-hBN

TLG-hBN C = 3
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(n(k)) = (CLC}J is electron occupation in the many-body ground state obtained from exact diagonalization

Eh(k) is the renormalized single-hole energy after Hartree-Fock mean field of the interaction



What happened here?

TLG-hBN C =3
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 The problem is weakly interacting in terms of holes!

 Emergent Fermi Liquids from an initial strongly interacting problem.

The hole dispersion dictates the underlying physics.

* Guiding principle : Electrons prefer to occupy states with the largest hole-energy.




FCls in other Moiré systems

Twisted Double Bilayer Graphene

Twisted Bilayer Graphene

Credit : Liu et al, Nature 583, (2020)

Credit : NIST



Twisted Bilayer Graphene aligned with Boron Nitride
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Yes, FCls, finally!

<

In twisted bilayer graphene aligned with boron nitride — but only at slightly weaker inter-layer
tunnelling than in current experiments...

Ground state degeneracy on a torus

Spectral flow of ground states
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Yes, FCls, finally!
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In twisted bilayer graphene aligned with boron nitride — but only at slightly weaker inter-layer
tunnelling than in current experiments...

Ground state degeneracy on a torus

Spectral flow of ground states

Particle entanglement spectrum
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 Corroborated by other works

- Spin polarization confirmed by Repellin and Senthil, Phys. Rev. Research 2, 023238 (2020)
- Analytical understanding in the “chiral limit” by Ledwith et. al., Phys. Rev. Research 2, 023237 (2020)



Article | Open Access | Published: 15 December 2021

Fractional Cherninsulators in magic-angle twisted g 04
bilayer graphene
Yonglong Xie &, Andrew T. Pierce, Jeong Min Park, Daniel E. Parker, Eslam Khalaf, Patrick Ledwith, Yuan O 3 L
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. Weak field (5 Tesla), similar effect as
changing inter-layer tunnelling




A series of FCls in tunable TDBG
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* Spin-polarized Laughlin like state at v = 1/3

* Laughlin state particle-hole conjugate at v = 2/3

* Spin-singlet Halperin 332 stateat v =2/5

* Possibly Halperin 332 particle-hole conjugate at v = 3/5

(d) f =1.35°, U = 60 meV

Spin-polarized FClat » =1/3 in C =2 band!
It could be thought of as a weakly interacting

state of composite fermions with negative flux
attachment!

Full details in Phys. Rev. Lett. 126, 026801



Quantum Geometry : Another look at the competition
| ?
(k) = g (K) + €40 F (k)
Quantum Geometric Berry Curvature
Tensor

arXiv:2202.10467



Fubini-Study metric

* Natural interpretation in terms of the distance between Bloch states
4{111120110 T2
form f wctor w
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* It appears in the hole dispersion FEj(k) = > V(q)|u'(k — q)u(k)[* = >, V(a)(1 - ¢aqsgas(k))
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- How does the metric J.:(k) affect the electron occupation (n(k)) = (clex) ?



Let's look again
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Electrons tend to occupy states with the highest hole-energy. “ Electrons

tend to occupy states with the lowest Fubini-Study metric trace!



Take home message

* Moiré systems are promising platforms for fractional Chern insulators.

* The particle-hole asymmetry of interactions in a single band
has dramatic consequences.

* The Fubini-Study metric is a relevant quantity to the low energy
physics of Moiré materials.



