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Single & bilayer graphene
In the absence of interactions

Monolayer = 1LG

Bilayer = 2LG
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Compare kinetic energy to interactions
Search for interaction effects? zoom in on E=0 as close as possible

Today we will look at what happens for 
Bernal stacked multilayers up to 8LG



Dn ~ 109 cm-2

Dn ~ 1011 cm-2

On substrate EF

n*

Approaching the Dirac point in Suspended graphene

bilayer
bilayer

Suspended

Dn approaching 108 cm-2 for T < 1K



Andrei’s groupKim’s group

FQHE at n = 1/3 in monolayer graphene

Early days of suspended Graphene

Under magnetic field

Nature 2009
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“Ideal” single-particle mono & bilayer at B=0

Monolayer = 1LG
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Insulating bilayer @ charge neutrality

Yacoby Lau

Interaction effects at B=0

Science 2011 PNAS 2012

Suppressed conductance 
at charge neutrality

All the action happens for n < 1010 cm-2

Renormalization

of Fermi velocity

Manchester group

Nat. Phys.  2011

Monolayer Bilayer



Symmetry broken gapped state in bilayers

• D ≠ 0 occurs spontaneously due to
e-e interactions

• Broken symmetry state with D as 
order parameter

• Sign of D depends on valley and spin

• Exchange energy: in general there is 
no electric field between the two layers

+Ds,v

- Ds,v

Phase transition
a gap opens because of 
e-e interactions:
The bilayer becomes
an insulator
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What does it really mean?



…and then: 

virtually all the world started working on graphene on hBN
and forgot about suspended graphene….

…BUT…

…Graphene on hBN is NOT Graphene…

&

…Graphene on any substrate does not reach 
the quality of suspended Graphene!

So:

We continued working on suspended graphene!
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“Multi” devices: Multi-terminal and/or Multi-layer devices

V
+

–

I1,4V2,3

Suspended multilayer devices
of very high quality

- Ballistic transport
For n > 1010 cm-2

- Quantum Hall plateaus
starting from 300 Gauss

- Observed 
even-denominator FQHE

Bilayer Graphene



T = 0.25 K

Even denominator FQHE: first time not in GaAs-2DEGs
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Dirac Band Landau Levels Bilayer Band Landau Levels

E=0  level:    4 x Degenerate E=0 level:    8 x Degenerate

E(
k)

1L 2L 3L 4L

Ex. Bernal trilayer: 
1 x Dirac + 1 x Bilayer bands   ----- E=0  level:    12 x Degenerate

Identifying Multilayers from Low-B integer QHE

Shared by valence and conduction band

First low-B plateaus appearing at filling factor:
n = - 6 (valence band) &  n = + 6 (conduction band) 



It works -- but often requires multiterminal devices

Successfully identified up to 8LG so far

At low B look for the first plateau appearing
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Thickness determination from careful contrast analysis
Graphene multilayers on Si/SiO2

By now more flakes:
Still works up to 12-13 layers

This figure: 
more than 350 flakes analyzed

Tell you thickness but does not tell you stacking:
if natural graphite is used to exfoliate Bernal predominates
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OK…But is there anything interesting in thicker multilayers?
2 mm
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T=4.2 K

4LG: - Zero-gap semiconductor?
- Semi-metal? 

Highly resistive @ T=4.2 K:
50 x more resistive than bilayers 
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…Yes: there is!



Bernal 4LG are insulators  --- more insulating than bilayers

2 mm

1

2

3

4

Thermally activated conductance 
@ charge neutrality

Uniform: 
seen in all pair of contacts

Activation energy 
Comparable to bilayer:
….strange

Increasing thickness makes the behavior and deviate more from 

that of graphite….is this a coincidence?
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High resistance: 
@ charge neutrality and  T= 4.2 K 
R=0.6 M

6L Graphene also has high resistance at CNP

Let’s check Bernal-stacked  6LG

• Very sharp peak: dn ~ 2 109 cm-2; 

• At low B
Dominant plateau in xy at 12 e2/h
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High resistance: 
@charge neurality & T= 4.2 K 
R=0.2 M

Square resistance ~ 350 kW
Same as in 4LG and 6LG

In this case only 2-terminal device

It does not stop…Bernal-stacked  8LG

• Again: very sharp peak, dn ~ 2 109 cm-2; 

At low B
Dominant plateau 
xy at 16 e2/h



2LG 4LG 6LG 8LG

Resistance temperature dependence



What about odd multilayers? Even-Odd !

We are onto something…but what?



Nat. Commun. 6 6419 (2015)

2D Mater. 3, 045014 (2016)

D -- a self-consistent mean-field potential explains insulating bilayer
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Staggered potential:
opens a gap @ CNP in 4LG

Let’s not forget: Even-Odd !

Let’s generalize this idea to thicker multilayers:
D -- a self-consistent mean-field staggered potential

Ex.: 4-layer graphene



Nat. Commun. 6 6419 (2015)

2D Mater. 3, 045014 (2016)

N=1 N=2 N=3,5,7 N=4,6,8

Ungapped Gapped Ungapped Gapped

Staggered potential: it works for all thicknesses!

+D

-D

+D

• All even multilayers: 
fully gapped

• All odd multilayers: 
parabolic bands gap out, but Dirac band doesn’t

Insulating state and Even-Odd effect explained!



Are we done ? Not really

• Do we have any direct evidence that e-e interactions are doing 
anything in  odd layers?  No !

• Mean-field staggered potential: 
There must be a phase transition at which the staggered potential 
(which is the order parameter) appears. What kind of phase transition?

– Quantum phase transition at T=0 as a function of n?
– Finite temperature phase transition at Tc? What is Tc?

• How large is the staggered potential? Is it the same for all thicknesses?

• At which thickness do we recover the behavior of graphite? 



Probing the density of states from the width of the Dirac peak
Beyond R(T) measurements
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Ex.: Bilayer Graphene



∆𝑇<𝑇𝑐= ∆0𝑡𝑎𝑛ℎ 1.74
𝑇𝑐
𝑇
− 1

∆𝑇>𝑇𝑐= 0

Mean-field T-dependence 
of the gap D(T)

It works! 

Second-order phase transition at finite T: D goes to zero at Tc=12 K

Slope gives effective mass

m* = 0.033 m0



Very Reproducible
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Not only for bilayer, also for 4LG, 6LG,… 

And look at the values of Tc…

∆𝑇<𝑇𝑐= ∆0𝑡𝑎𝑛ℎ 1.74
𝑇𝑐
𝑇
− 1

∆𝑇>𝑇𝑐= 0
TC = 90 K
D(0) = 150 K

6LG

TC = 38 K
D(0) = 60 K

4LG



…and it works for odd layers as well: 3LG, 5LG, 7LG
In this density range the DOS of the quadratic bands 

is ~ 100 x the DOS of the Dirac band
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Direct demonstration of e-e interaction 

effects in odd Bernal-stacked multilayers 



Looks good also on log scale

Methods break when G < e2/h



Gap

Tc Scaling

Transport

Activation energy is NOT the gap
(edge transport?)

Even-odd

Systematics



𝑘𝐵𝑇𝑐 =
𝐸𝑐𝑢𝑡−𝑜𝑓𝑓

2 sinh Τ1 (𝑔𝑉)

Can we understand why Tc increases 

with increasing thickness?

Maybe, but can it be justified…?



At around 20 LG D will hit the “high energy bands”
New scenario certainly needed past that thickness

When will it stop? Don’t know, but…
If D gets too large, can’t use low-energy Hamiltonian anymore

E(
k)

1L 2L 3L 4L



Ballistic transport limited by e-h collisions 
in charge neutral suspended bilayer graphene
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What limits ballistic transport in suspended bilayers?

V
+

–

I1,4V2,3
Suspended bilayer devices
of very high quality

- Charge fluctuations
< 109 cm-2

- Quantum Hall plateaus
starting from 300 Gauss

- Observed 
even-denominator FQHE



Strongly T & n dependent scattering mechanism

Onset of negative resistance (=ballistic transport) 
depends strongly on temperature and carrier density

• Onset of negative resistance transport at EF ~ kT
• Ballistic transport for EF > kT

Hint for the role of e-h collisions



How does it work?

Electron-hole scattering “dissipates” current

Coulomb scattering always conserves momentum 
(we do not consider umklapp processes)

But in the presence of multiple bands momentum conservation
does not imply velocity conservation



𝜎 = 𝑛𝑒𝑒𝜇𝑒 + 𝑛ℎ𝑒𝜇ℎ 𝜇𝑒/ℎ =
𝑒𝜏𝑒/ℎ
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Assume: e-h collision determine velocity relaxation
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No free parameters: either it reproduces the data or it does not

Can e-h collisions explain transport in the diffusive regime?

At charge neutrality (= kT > EF) we have electron and holes

(1)

(2)

(1) + (2)

We obtain:



Perfect agreement with no free parameters when kT > EF

Excellent agreement:
over 2 orders of
magnitude in n

Normalized 
conductivity:
Near CNP it only 
depends on EF/kT

Observed in 4 out of 4 samples investigated in detail 
- between 10 and 100 K, 
- with m* = 0.031-0.034 mo



It also works on Bernal-stacked trilayer graphene

Bernal stacked
trilayer

• For E ~ kT > EF quadratic band  DOS > 100 x linear band DOS
• Quadratic band dominates transport

Bands:
1 x linear
1 x quadratic

Perfect agreement with m* = 0.06 mo

(expected m* = 0.05 mo)



Also quantitative agreement with no free parameters 
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𝑛𝑒 𝑛 = 0, 𝑇 + 𝑛ℎ 𝑛 = 0, 𝑇T-dependent mobility at CNP

∁ ~ 1

• Quantiative agrement within a factor of 2-3 or better
• Expected due to indtermination on ∁ and precise geometry

Bilayer Trilayer



Conclusions

Unexpected insulating state @ CNP in all even 
Bernal multilayers 

Even-odd effect: at low T all odd multilayers remain
conducting with conductivity of 1 Dirac band

2nd order phase transition gapping quadratic bands
In all layers, with Tc increasing with thickness

Inelastic scattering rate @ CNP is Γ = 𝐶
𝑘𝑇

ℏ

e-h scattering limits ballistic motion 
at CNP and cause diffusive transport


