Electronic phase transitions in charge-neutral graphene multilayers: Does graphene ever become graphite upon increasing thickness?

Alberto Morpurgo

Work done by:

DongKeun Ki, YoungWoo Nam, David Soler Delgado, Anna Grushina

Single & bilayer graphene

In the absence of interactions

$$H_{1L} = \begin{pmatrix} 0 & \hbar v_F (k_x - ik_y) \\ \hbar v_F (k_x + ik_y) & 0 \end{pmatrix}$$

Bilayer = 2LG

$$H_{2L} = \begin{pmatrix} 0 & \frac{\hbar^2}{2m^*} (k_x - ik_y)^2 \\ \frac{\hbar^2}{2m^*} (k_x + ik_y) & 0 \end{pmatrix}$$

Compare kinetic energy to interactions

Search for interaction effects? zoom in on E=0 as close as possible

Approaching the Dirac point in Suspended graphene

Early days of suspended Graphene

Under magnetic field

FQHE at v = 1/3 in monolayer graphene

Kim's group

Andrei's group

Nature 2009

"Ideal" single-particle mono & bilayer at B=0

Monolayer = 1LG

$$H_{1L} = \begin{pmatrix} 0 & \hbar v_F (k_x - ik_y) \\ \hbar v_F (k_x + ik_y) & 0 \end{pmatrix}$$

$$H_{2L} = \begin{pmatrix} \Delta & \frac{\hbar^2}{2m^*} (k_x - ik_y)^2 \\ \frac{\hbar^2}{2m^*} (k_x + ik_y) & -\Delta \end{pmatrix}$$

Interaction effects at B=0

Monolayer

Renormalization of Fermi velocity

Nat. Phys. 2011

Bilayer

Insulating bilayer @ charge neutrality

Suppressed conductance at charge neutrality

All the action happens for $n < 10^{10}$ cm⁻²

Symmetry broken gapped state in bilayers

What does it really mean?

$$+\Delta_{s,v}$$
 $-\Delta_{s,v}$

Phase transition
a gap opens because of
e-e interactions:

The bilayer becomes an insulator

$$H_{2L}$$

$$= \frac{\hbar^2}{2m^*} \begin{pmatrix} \Delta_{s,v} & (k_x - ik_y)^2 \\ (k_x + ik_y)^2 & -\Delta_{s,v} \end{pmatrix}$$

- $\Delta \neq 0$ occurs spontaneously due to e-e interactions
- Broken symmetry state with Δ as order parameter
- Sign of ∆ depends on valley and spin
- Exchange energy: in general there is no electric field between the two layers

...and then:

virtually all the world started working on graphene on hBN and forgot about suspended graphene....

...BUT...

...Graphene on hBN is NOT Graphene...

&

...Graphene on any substrate does not reach the quality of suspended Graphene!

So:

We continued working on suspended graphene!

"Multi" devices: Multi-terminal and/or Multi-layer devices

Bilayer Graphene

- Quantum Hall plateaus starting from 300 Gauss
- Observedeven-denominator FQHE

Even denominator FQHE: first time not in GaAs-2DEGs

Identifying Multilayers from Low-B integer QHE

Dirac Band Landau Levels

$$\varepsilon_N = \pm v_F \sqrt{2e\hbar BN}$$

E=0 level: 4 x Degenerate

Bilayer Band Landau Levels

$$\varepsilon_N = \pm \hbar \omega_c \sqrt{N(N-1)}$$

E=0 level: 8 x Degenerate

Shared by valence and conduction band

Ex. Bernal trilayer:

1 x Dirac + 1 x Bilayer bands ----- *E=0 level:* 12 x Degenerate

First low-B plateaus appearing at filling factor:

v = -6 (valence band) & v = +6 (conduction band)

It works -- but often requires multiterminal devices

At low B look for the first plateau appearing

Successfully identified up to 8LG so far

Thickness determination from careful contrast analysis

Graphene multilayers on Si/SiO₂

Tell you thickness but does not tell you stacking: if natural graphite is used to exfoliate Bernal predominates

OK...But is there anything interesting in thicker multilayers?

... Yes: there is!

Bernal 4LG are insulators --- more insulating than bilayers

Increasing thickness makes the behavior and deviate more from that of graphite....is this a coincidence?

Let's check Bernal-stacked 6LG

Very sharp peak: δ n $^{\sim}$ 2 10^{9} cm $^{-2}$;

High resistance:

@ charge neutrality and T= 4.2 K

At low B

Dominant plateau in σ_{xy} at 12 e^2/h

6L Graphene also has high resistance at CNP

It does not stop...Bernal-stacked 8LG

In this case only 2-terminal device

@charge neurality & T= 4.2 K $R=0.2~M\Omega$

Square resistance ~ 350 kW Same as in 4LG and 6LG

At low B Dominant plateau σ_{xy} at 16 e^2/h

Resistance temperature dependence

What about odd multilayers? Even-Odd!

We are onto something...but what?

Let's not forget: Even-Odd!

△ — a self-consistent mean-field potential explains insulating bilayer

Let's generalize this idea to thicker multilayers:

△ — a self-consistent mean-field staggered potential

Nat. Commun. **6** 6419 (2015) 2D Mater. **3**, 045014 (2016)

Staggered potential: it works for all thicknesses!

Nat. Commun. **6** 6419 (2015) 2D Mater. **3**, 045014 (2016)

Insulating state and Even-Odd effect explained!

Are we done? Not really

- Do we have any direct evidence that e-e interactions are doing anything in odd layers?

 No!
- Mean-field staggered potential:
 There must be a phase transition at which the staggered potential
 (which is the order parameter) appears. What kind of phase transition?
- Quantum phase transition at T=0 as a function of n?
- Finite temperature phase transition at T_c ? What is T_c ?

- How large is the staggered potential? Is it the same for all thicknesses?
- At which thickness do we recover the behavior of graphite?

Probing the density of states from the width of the Dirac peak

Beyond R(T) measurements

It works!

Second-order phase transition at finite T: Δ goes to zero at T_c =12 K

Mean-field T-dependence of the gap $\Delta(T)$

$$\Delta_{T < T_c} = \Delta_0 \tanh\left(1.74 \sqrt{\frac{T_c}{T}} - 1\right)$$

$$\Delta_{T > T_c} = 0$$

Very Reproducible

Not only for bilayer, also for 4LG, 6LG,...

And look at the values of T_c ...

...and it works for odd layers as well: 3LG, 5LG, 7LG

In this density range the DOS of the quadratic bands is ~ 100 x the DOS of the Dirac band

Direct demonstration of e-e interaction effects in odd Bernal-stacked multilayers

Looks good also on log scale

Methods break when $G < e^2/h$

Can we understand why T_c increases with increasing thickness?

$$k_B T_c = \frac{E_{cut-off}}{2 \sinh[1/(gV)]}$$

Maybe, but can it be justified...?

When will it stop? Don't know, but...

If Δ gets too large, can't use low-energy Hamiltonian anymore

At around 20 LG △ will hit the "high energy bands" New scenario certainly needed past that thickness

Ballistic transport limited by e-h collisions in charge neutral suspended bilayer graphene

What limits ballistic transport in suspended bilayers?

Suspended bilayer devices of very high quality

- Charge fluctuations
- $< 10^9 \text{ cm}^{-2}$
- Quantum Hall plateaus starting from 300 Gauss
- Observedeven-denominator FQHE

Strongly T & n dependent scattering mechanism

Onset of negative resistance (=ballistic transport)
depends strongly on temperature and carrier density

- Onset of negative resistance transport at $E_F \sim kT$
- Ballistic transport for E_F > kT

Hint for the role of e-h collisions

How does it work?

Coulomb scattering always conserves momentum (we do not consider umklapp processes)

But in the presence of multiple bands momentum conservation does not imply velocity conservation

Electron-hole scattering "dissipates" current

Can e-h collisions explain transport in the diffusive regime?

At charge neutrality $(=kT > E_F)$ we have electron and holes

(1)
$$\sigma = n_e e \mu_e + n_h e \mu_h$$

$$\mu_{e/h} = \frac{e \tau_{e/h}}{m}$$

Assume: e-h collision determine velocity relaxation

(2)
$$\frac{1}{\tau_e} = \Gamma \frac{n_h}{n_e + n_h} \qquad \frac{1}{\tau_h} = \Gamma \frac{n_e}{n_e + n_h} \qquad \Gamma = C \frac{kT}{\hbar} \qquad C \sim 1$$

<u>We obtain:</u>

(1) + (2)
$$\sigma(n,T) = C^{-1} \frac{\hbar}{kT} \frac{e^2}{m^*} (n_e + n_h) \frac{n_e^2 + n_h^2}{n_e n_h}$$

$$\frac{\sigma(n,T)}{\sigma(0,T)} = \frac{\pi\hbar^2}{8kTm^*\ln(2)} \frac{(n_e + n_h)(n_e^2 + n_h^2)}{n_e n_h}$$

$$m^* = 0.033 m_o$$

No free parameters: either it reproduces the data or it does not

Perfect agreement with no free parameters when $kT > E_F$

Observed in 4 out of 4 samples investigated in detail

- between 10 and 100 K,
- with $m^* = 0.031-0.034 m_o$

It also works on Bernal-stacked trilayer graphene

Bernal stacked trilayer

Bands:

1 x linear

1 x quadratic

- For $E \sim kT > E_F$ quadratic band DOS > 100 x linear band DOS
- Quadratic band dominates transport

Perfect agreement with $m^* = 0.06 m_o$ (expected $m^* = 0.05 m_o$)

Also quantitative agreement with no free parameters

$$\sigma(n,T) = \mathsf{C}^{-1} \frac{\hbar}{kT} \frac{e^2}{m^*} (n_e + n_h) \frac{n_e^2 + n_h^2}{n_e n_h} \qquad \mathsf{C} \sim 1$$

$$\mathsf{T\text{-}dependent\ mobility\ at\ CNP} \qquad \mu(T) = \frac{\sigma(n=0,T)}{n_e(n=0,T) + n_h(n=0,T)}$$

- Quantiative agreement within a factor of 2-3 or better
- Expected due to indtermination on C and precise geometry

Conclusions

Unexpected insulating state @ CNP in all even Bernal multilayers

Even-odd effect: at low T all odd multilayers remain conducting with conductivity of 1 Dirac band

 2^{nd} order phase transition gapping quadratic bands In all layers, with T_c increasing with thickness

e-h scattering limits ballistic motion at CNP and cause diffusive transport

Inelastic scattering rate @ CNP is $\Gamma = C \frac{kT}{\hbar}$