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TABLE I. The complete classification table of reflection-symmetric topological insulators and superconductors: For class AIII, R± indicates
that the reflection-symmetry operator (R) commutes/anticommutes with S. For four real symmetry classes (R±±, R±∓) that have TRS and PHS,
the first sign ± of R indicates that R commutes/anticommutes with T and the second sign ± indicates that R commutes/anticommutes with C.
For the four other real symmetry classes (R±) that preserve only one nonspatial symmetry, the sign ± indicates that R commutes/anticommutes
with system’s nonspatial symmetry operator. The Hamiltonian in the mirror-symmetry plane can be block-diagonalized to two blocks in the
eigenspace R = ±1. The superscript of 2 in the mirror-symmetry classes (MSC) (see Appendix B) indicates that these two blocks of R = ±1
are independent.

AZ class T C S R operator MSC d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

AIII 0 0 1 R+ AIII2 0 MZ 0 MZ 0 MZ 0 MZ
R− A Z1 0 Z1 0 Z1 0 Z1 0

A 0 0 0 R A2 MZ 0 MZ 0 MZ 0 MZ 0
AI + 0 0 R+

a AI2 MZ 0 0 0 2MZ 0 Z2 Z2

R− A 0 0 2MZ 0 0 Z2 MZ 0
BDI + + 1 R++

a BDI2 Z2 MZ 0 0 0 2MZ 0 Z2

R−− AIII 0 0 0 2MZ 0 0 Z2 MZ
R+− AI 2Z1 0 0 0 Z1 0 Z2 Z2

R−+ D 2Z 0 2MZ 0 2Z 0 2MZ 0
D 0 + 0 R+

a D2 Z2 Z2 MZ 0 0 0 2MZ 0
R−

b A MZ 0 0 0 2MZ 0 0 Z2

DIII − + 1 R++ DIII2 0 Z2 Z2 MZ 0 0 0 2MZ
R−−

b AIII Z2 MZ 0 0 0 2MZ 0 0
R+− AII 2MZ 0 2Z 0 2MZ 0 0 2Z
R−+ D Z2 Z2 Z1 0 0 0 2Z1 0

AII − 0 0 R+ AII2 2MZ 0 Z2 Z2 MZ 0 0 0
R−

b A 0 Z2 MZ 0 0 0 2MZ 0
CII − − 1 R++ CII2 0 2MZ 0 Z2 Z2 MZ 0 0

R−− AIII 0 0 Z2 MZ 0 0 0 2MZ
R+− AII 2Z1 0 Z2 Z2 Z1 0 0 0
R−+ C 2Z 0 2MZ 0 2Z 0 2MZ 0

C 0 − 0 R+
c C2 0 0 2MZ 0 Z2 Z2 MZ 0

R− A 2MZ 0 0 Z2 MZ 0 0 0
CI + − 1 R++

d CI2 0 0 0 2MZ 0 Z2 Z2 MZ
R−− AIII 0 2MZ 0 0 Z2 MZ 0 0
R+− AI 2MZ 0 2Z 0 2MZ 0 0 2Z
R−+ C 0 0 2Z1 0 Z2 Z2 Z1 0

aSpinless systems.
bSpin- 1

2 systems.
cSpin- 1

2 , C2 = 1, SU(2) symmetry for the spin.
dSpin- 1

2 , C2 = 1, and T 2 = −1, SU(2) symmetry for the spin.

TABLE II. The original classification table of topological insulators and superconductors without reflection symmetry (Refs. 18 and 19).
The first column represents the names of the ten symmetry classes associated with the presence or absence of TR, PH, and chiral symmetries
in the last three columns. The number 0 in the last three columns denotes the absence of the symmetry. The numbers +1 and −1 denote the
presence of the symmetry and indicate the signs of the square TR operator and the square PH operator.

AZ class\d 0 1 2 3 4 5 6 7 T C S

A Z 0 Z 0 Z 0 Z 0 0 0 0
AIII 0 Z 0 Z 0 Z 0 Z 0 0 1
AI Z 0 0 0 2Z 0 Z2 Z2 + 0 0
BDI Z2 Z 0 0 0 2Z 0 Z2 + + 1
D Z2 Z2 Z 0 0 0 2Z 0 0 + 0
DIII 0 Z2 Z2 Z 0 0 0 2Z − + 1
AII 2Z 0 Z2 Z2 Z 0 0 0 − 0 0
CII 0 2Z 0 Z2 Z2 Z 0 0 − − 1
C 0 0 2Z 0 Z2 Z2 Z 0 0 − 0
CI 0 0 0 2Z 0 Z2 Z2 Z + − 1
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In this paper we show that the reflection-matrix-based
dimensional reduction scheme of Fulga et al. can also
be applied to reflection-symmetric topological insulators.
Using the scheme of Fulga et al. naturally leads us to
consider a “chiral reflection” operation, such that, once
the chiral reflection-symmetric gapped Hamiltonians are
included, all symmetry combinations can be grouped in
period-two and period-eight cyclic sequences, for which
the dimension d is increased in unit steps. Our results are
in complete agreement with the classification obtained
by Shiozaki and Sato,44 who used the Hamiltonian di-
mensional reduction scheme of Teo and Kane48 to obtain
relations between the corresponding K groups.

Whereas the reflection-matrix-based dimensional re-
duction scheme allows one to obtain the classification
for arbitrary dimension from the classification at d = 0
in the absence of spatial symmetries,11 in the presence
of reflection symmetry this procedure ends already for
dimension d = 1, since a one-dimensional system has
no “boundary” that is mapped onto itself by reflection.
To make this article self-contained and to provide an al-
ternative to the existing classification schemes,42–44 we
here present a classification of one-dimensional reflection-
symmetric topological insulators based on relative homo-
topy groups and exact sequences, following the approach
taken by Turner et al. in their classification of inversion-
symmetric topological insulators.49 In combination with
the reflection-matrix-based reduction scheme, the d = 1
classification gives a complete classification for reflection-
symmetric topological insulators in all dimensions d � 1.
An additional advantage of the approach of Turner et

al. is that it gives explicit expressions for topological in-
variants and for the generators of the topological classes
(many examples are given in App. C).

Our approach allows us to address an issue related to
stability of the topological phase of the second descen-
dant of Z

2

in the classes where reflection symmetry anti-
commutes with non-spatial symmetries. Chiu et al. and
Morimoto and Furusaki argued that the topological Z

2

index cannot be defined in these cases and that an even-
tual topologically non-trivial phase is always “weak”, i.e.,
it is instable to perturbations that break the lattice trans-
lation symmetry.42,43 While Shiozaki and Sato left open
the possibility of a “subtle instability” to translation-
symmetry-breaking perturbations, they insisted that the
topological invariant is a “strong” one.44 Having the ex-
plicit form of the topological invariant at our disposal,
we can confirm that it is invariant under a redefinition
of the unit cell. Moreover, since our reflection-matrix
based approach e↵ectively classifies the boundary of the
insulator, we can show explicitly that a nonzero topo-
logical invariant implies the existence of a topologically
protected boundary state. We find no signs of the insta-
bility reported in Refs. 42 and 43.

This article is organized as follows: In Sec. II we re-
view the constraints that reflection symmetry poses on
the Hamiltonian Hd of a gapped system in d dimensions.
In Sec. III we review the reflection-matrix-based method

of dimensional reduction originally proposed by Fulga et

al.

11 and we show how the method can be generalized
to reflection-symmetric topological insulators. The topo-
logical classification of one-dimensional topological insu-
lators with reflection symmetry using the method of rel-
ative homotopy groups and exact sequences is given in
Sec. IV. We discuss the controversial second-descendant
Z

2

phase in Sec. V. We conclude with a brief summary
in Sec. VI. Four appendices contain details of the di-
mensionless reduction scheme, an extension of the d = 1
classification to higher dimensions (i.e., without the as-
sumption of bulk-boundary correspondence, which un-
derlies the reflection-matrix-based dimensional reduction
scheme), explicit examples for topological invariants of
one-dimensional reflection-symmetric topological insula-
tors, and supporting details for the second-descendant Z

2

phase.

II. SYMMETRIES

We consider a Hamiltonian Hd(k) in d dimensions,
with k = (k

1

, k
2

, . . . , kd). For definiteness we take the
reflection plane to be perpendicular to the dth unit vec-
tor, so that reflection maps the wavevector k to Rk =
(k

1

, k
2

, . . . , kd�1

,�kd). Reflection also a↵ects the basis
states in the unit cell, so that for the Hamiltonian Hd(k)
reflection symmetry takes the form

Hd(k) = U †
RHd(Rk)UR, (1)

with UR a k-independent unitary matrix. We require
U2

R = 1 to fix the phase freedom in the definition of UR.
The reflection symmetry exists possibly in combination

with time-reversal (T ), particle-hole (P), and/or chiral
(C) symmetries. These symmetries take the form

Hd(k) = U †
T Hd(�k)⇤UT , (2)

Hd(k) = �U†
PHd(�k)⇤UP , (3)

Hd(k) = �U†
CHd(k)UC , (4)

where UT , UP , and UC are k-independent unitary matri-
ces. If time-reversal symmetry and particle-hole sym-
metry are both present, UC = UPU⇤

T . Further, the
unitary matrices UT , UP , and UC satisfy UT U⇤

T = T 2,
UPU⇤

P = P2, U2

C = 1, and UPU⇤
T = T 2P2UT U⇤

P . [The
condition U2

C = 1 is not fundamental, since multiplica-
tion of UC with a phase factor results in the same chiral
symmetry relation (4). We will use this condition to fix
signs in intermediate expressions for the general deriva-
tion of the Bott clock from scattering theory, but not in
the discussion of examples for specific symmetry classes.]

The three non-spatial symmetry operations T , P, and
C define the ten Altland-Zirnbauer classes.1 The two
“complex” classes have no symmetries linking H to H⇤;
the remaining eight “real” classes have time-reversal sym-
metry, particle-hole symmetry, or both. Following com-
mon practice in the field, we use Cartan labels to refer
to the corresponding symmetry classes, see Table I.
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”effective” symmtries 

spin-1/2: T = �2K, T 2 = �1 + unitary symmetry {T , UX } = 0

T̃ 2 = (T UX )2 = 1”effective” T  

Ambiguity of algebraic relation between unitary & antiunitary symmetries 

T RT † = R T (iR)T † = �(iR) R2 = 1

Anticommuting example R, x -> -x: 

x 

R = �
x

{T , R} = 0

AZ symmetry classes + crystalline symmetry 

Liang Fu, Phys. Rev. Lett. 106, 106802 (2011) 

è Crystalline topological insulators (TCIs) 
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TABLE I. The complete classification table of reflection-symmetric topological insulators and superconductors: For class AIII, R± indicates
that the reflection-symmetry operator (R) commutes/anticommutes with S. For four real symmetry classes (R±±, R±∓) that have TRS and PHS,
the first sign ± of R indicates that R commutes/anticommutes with T and the second sign ± indicates that R commutes/anticommutes with C.
For the four other real symmetry classes (R±) that preserve only one nonspatial symmetry, the sign ± indicates that R commutes/anticommutes
with system’s nonspatial symmetry operator. The Hamiltonian in the mirror-symmetry plane can be block-diagonalized to two blocks in the
eigenspace R = ±1. The superscript of 2 in the mirror-symmetry classes (MSC) (see Appendix B) indicates that these two blocks of R = ±1
are independent.

AZ class T C S R operator MSC d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

AIII 0 0 1 R+ AIII2 0 MZ 0 MZ 0 MZ 0 MZ
R− A Z1 0 Z1 0 Z1 0 Z1 0

A 0 0 0 R A2 MZ 0 MZ 0 MZ 0 MZ 0
AI + 0 0 R+

a AI2 MZ 0 0 0 2MZ 0 Z2 Z2

R− A 0 0 2MZ 0 0 Z2 MZ 0
BDI + + 1 R++

a BDI2 Z2 MZ 0 0 0 2MZ 0 Z2

R−− AIII 0 0 0 2MZ 0 0 Z2 MZ
R+− AI 2Z1 0 0 0 Z1 0 Z2 Z2

R−+ D 2Z 0 2MZ 0 2Z 0 2MZ 0
D 0 + 0 R+

a D2 Z2 Z2 MZ 0 0 0 2MZ 0
R−

b A MZ 0 0 0 2MZ 0 0 Z2

DIII − + 1 R++ DIII2 0 Z2 Z2 MZ 0 0 0 2MZ
R−−

b AIII Z2 MZ 0 0 0 2MZ 0 0
R+− AII 2MZ 0 2Z 0 2MZ 0 0 2Z
R−+ D Z2 Z2 Z1 0 0 0 2Z1 0

AII − 0 0 R+ AII2 2MZ 0 Z2 Z2 MZ 0 0 0
R−

b A 0 Z2 MZ 0 0 0 2MZ 0
CII − − 1 R++ CII2 0 2MZ 0 Z2 Z2 MZ 0 0

R−− AIII 0 0 Z2 MZ 0 0 0 2MZ
R+− AII 2Z1 0 Z2 Z2 Z1 0 0 0
R−+ C 2Z 0 2MZ 0 2Z 0 2MZ 0

C 0 − 0 R+
c C2 0 0 2MZ 0 Z2 Z2 MZ 0

R− A 2MZ 0 0 Z2 MZ 0 0 0
CI + − 1 R++

d CI2 0 0 0 2MZ 0 Z2 Z2 MZ
R−− AIII 0 2MZ 0 0 Z2 MZ 0 0
R+− AI 2MZ 0 2Z 0 2MZ 0 0 2Z
R−+ C 0 0 2Z1 0 Z2 Z2 Z1 0

aSpinless systems.
bSpin- 1

2 systems.
cSpin- 1

2 , C2 = 1, SU(2) symmetry for the spin.
dSpin- 1

2 , C2 = 1, and T 2 = −1, SU(2) symmetry for the spin.

TABLE II. The original classification table of topological insulators and superconductors without reflection symmetry (Refs. 18 and 19).
The first column represents the names of the ten symmetry classes associated with the presence or absence of TR, PH, and chiral symmetries
in the last three columns. The number 0 in the last three columns denotes the absence of the symmetry. The numbers +1 and −1 denote the
presence of the symmetry and indicate the signs of the square TR operator and the square PH operator.

AZ class\d 0 1 2 3 4 5 6 7 T C S

A Z 0 Z 0 Z 0 Z 0 0 0 0
AIII 0 Z 0 Z 0 Z 0 Z 0 0 1
AI Z 0 0 0 2Z 0 Z2 Z2 + 0 0
BDI Z2 Z 0 0 0 2Z 0 Z2 + + 1
D Z2 Z2 Z 0 0 0 2Z 0 0 + 0
DIII 0 Z2 Z2 Z 0 0 0 2Z − + 1
AII 2Z 0 Z2 Z2 Z 0 0 0 − 0 0
CII 0 2Z 0 Z2 Z2 Z 0 0 − − 1
C 0 0 2Z 0 Z2 Z2 Z 0 0 − 0
CI 0 0 0 2Z 0 Z2 Z2 Z + − 1
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The first column represents the names of the ten symmetry classes associated with the presence or absence of TR, PH, and chiral symmetries
in the last three columns. The number 0 in the last three columns denotes the absence of the symmetry. The numbers +1 and −1 denote the
presence of the symmetry and indicate the signs of the square TR operator and the square PH operator.

AZ class\d 0 1 2 3 4 5 6 7 T C S

A Z 0 Z 0 Z 0 Z 0 0 0 0
AIII 0 Z 0 Z 0 Z 0 Z 0 0 1
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FIG. 2. Symmetry properties of r(k) and H (k) in the ten symmetry classes. Time-reversal symmetry is denoted by T , particle-hole
symmetry by P . The signs at the top and left of the table denote either the absence (×) of a corresponding symmetry, or the value of
the squared symmetry operator. The entries of the table with a gray background have an additional chiral symmetry C, which always
has the form shown in the AIII entry of the table. In particular, we always chose a basis such that r(k) = r†(k) in the chiral symmetry
classes. The way symmetry classes transform under our definition of Hd−1 [cf. (3.4)] is denoted by the arrows; the double arrow implies a
doubling of degrees of freedom as in Eq. (3.4b). Going along an arrow, the symmetry of the reflection block r(k) (marked by a solid box)
transforms into the symmetry of the reduced Hamiltonian (marked by a dashed box). In the chiral classes there is an additional symmetry
(not marked by a box) which can be obtained from the other by combining it with the chiral symmetry, H (k) = −τzH (k)τz and r(k) = r†(k),
respectively.

with Zd−1 given by Eq. (2.8) in d − 1 dimensions. The
matrices A, B, C, and D are subblocks of S given by

A =

⎛

⎜⎜⎝

S1,1 · · · S1,d−1

...
. . .

...

Sd−1,1 · · · Sd−1,d−1

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

S1,d

...

Sd−1,d

⎞

⎟⎟⎠ ,

C = ( Sd,1 · · · Sd,d−1 ), D = ( Sd,d ). (3.3)

To study topological properties of r(k) we construct an
effective Hamiltonian Hd−1(k) which has band gap closings
whenever r(k) has zero eigenvalues. In classes possessing
chiral symmetry one may choose a basis such that r(k) =
r†(k). If chiral symmetry is absent, there is no Hermiticity
condition on r , so we double the degrees of freedom to
construct a single Hermitian matrix out of a complex one.
The effective Hamiltonian is then given by

Hd−1(k) ≡ r(k), with chiral symmetry, (3.4a)

Hd−1(k) ≡
(

0 r(k)

r†(k) 0

)

, without chiral symmetry.

(3.4b)

It is straightforward to verify that in both cases the
Hamiltonian Hd−1(k) has band gap closings simultaneously
with the appearance of vanishing eigenvalues of r(k).

If r(k) has chiral symmetry, Hd−1(k) does not have it. On
the other hand, if r(k) has no chiral symmetry, then

Hd−1(k) = −τzHd−1(k)τz, (3.5)

with τz the third Pauli matrix in the space of the doubled
degrees of freedom. This means that in that case Hd−1(k)
acquires chiral symmetry.

The way in which the dimensional reduction changes the
symmetry class is summarized in Fig. 2. The transformation of
symmetries of r(k) into symmetries of Hd−1(k) is straightfor-
ward in all of the cases, except the time-reversal symmetry in
symmetry classes AII and AI. There we have r(k) = ±rT (−k),
and hence

Hd−1(k) ≡
(

0 r(k)
r†(k) 0

)
=

(
0 ±r(−k)T

±[rT (−k)]† 0

)

= ±τxH
∗
d−1(−k)τx. (3.6)

The details of the symmetry properties of r and H , as
well as the relations between these symmetries are given in
Appendix A.
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degrees of freedom. This means that in that case Hd−1(k)
acquires chiral symmetry.

The way in which the dimensional reduction changes the
symmetry class is summarized in Fig. 2. The transformation of
symmetries of r(k) into symmetries of Hd−1(k) is straightfor-
ward in all of the cases, except the time-reversal symmetry in
symmetry classes AII and AI. There we have r(k) = ±rT (−k),
and hence

Hd−1(k) ≡
(

0 r(k)
r†(k) 0

)
=

(
0 ±r(−k)T

±[rT (−k)]† 0

)

= ±τxH
∗
d−1(−k)τx. (3.6)

The details of the symmetry properties of r and H , as
well as the relations between these symmetries are given in
Appendix A.

165409-4

Dimensional reduction 

Changes the symmetry class 
 
BUT 
 
Hd-1 has the same topological 
invariants 



Existing proposals Bott periodicity for TCIs

2

In this paper we show that the reflection-matrix-based
dimensional reduction scheme of Fulga et al. can also
be applied to reflection-symmetric topological insulators.
Using the scheme of Fulga et al. naturally leads us to
consider a “chiral reflection” operation, such that, once
the chiral reflection-symmetric gapped Hamiltonians are
included, all symmetry combinations can be grouped in
period-two and period-eight cyclic sequences, for which
the dimension d is increased in unit steps. Our results are
in complete agreement with the classification obtained
by Shiozaki and Sato,44 who used the Hamiltonian di-
mensional reduction scheme of Teo and Kane48 to obtain
relations between the corresponding K groups.

Whereas the reflection-matrix-based dimensional re-
duction scheme allows one to obtain the classification
for arbitrary dimension from the classification at d = 0
in the absence of spatial symmetries,11 in the presence
of reflection symmetry this procedure ends already for
dimension d = 1, since a one-dimensional system has
no “boundary” that is mapped onto itself by reflection.
To make this article self-contained and to provide an al-
ternative to the existing classification schemes,42–44 we
here present a classification of one-dimensional reflection-
symmetric topological insulators based on relative homo-
topy groups and exact sequences, following the approach
taken by Turner et al. in their classification of inversion-
symmetric topological insulators.49 In combination with
the reflection-matrix-based reduction scheme, the d = 1
classification gives a complete classification for reflection-
symmetric topological insulators in all dimensions d � 1.
An additional advantage of the approach of Turner et

al. is that it gives explicit expressions for topological in-
variants and for the generators of the topological classes
(many examples are given in App. C).

Our approach allows us to address an issue related to
stability of the topological phase of the second descen-
dant of Z

2

in the classes where reflection symmetry anti-
commutes with non-spatial symmetries. Chiu et al. and
Morimoto and Furusaki argued that the topological Z

2

index cannot be defined in these cases and that an even-
tual topologically non-trivial phase is always “weak”, i.e.,
it is instable to perturbations that break the lattice trans-
lation symmetry.42,43 While Shiozaki and Sato left open
the possibility of a “subtle instability” to translation-
symmetry-breaking perturbations, they insisted that the
topological invariant is a “strong” one.44 Having the ex-
plicit form of the topological invariant at our disposal,
we can confirm that it is invariant under a redefinition
of the unit cell. Moreover, since our reflection-matrix
based approach e↵ectively classifies the boundary of the
insulator, we can show explicitly that a nonzero topo-
logical invariant implies the existence of a topologically
protected boundary state. We find no signs of the insta-
bility reported in Refs. 42 and 43.

This article is organized as follows: In Sec. II we re-
view the constraints that reflection symmetry poses on
the Hamiltonian Hd of a gapped system in d dimensions.
In Sec. III we review the reflection-matrix-based method

of dimensional reduction originally proposed by Fulga et

al.

11 and we show how the method can be generalized
to reflection-symmetric topological insulators. The topo-
logical classification of one-dimensional topological insu-
lators with reflection symmetry using the method of rel-
ative homotopy groups and exact sequences is given in
Sec. IV. We discuss the controversial second-descendant
Z

2

phase in Sec. V. We conclude with a brief summary
in Sec. VI. Four appendices contain details of the di-
mensionless reduction scheme, an extension of the d = 1
classification to higher dimensions (i.e., without the as-
sumption of bulk-boundary correspondence, which un-
derlies the reflection-matrix-based dimensional reduction
scheme), explicit examples for topological invariants of
one-dimensional reflection-symmetric topological insula-
tors, and supporting details for the second-descendant Z

2

phase.

II. SYMMETRIES

We consider a Hamiltonian Hd(k) in d dimensions,
with k = (k

1

, k
2

, . . . , kd). For definiteness we take the
reflection plane to be perpendicular to the dth unit vec-
tor, so that reflection maps the wavevector k to Rk =
(k

1

, k
2

, . . . , kd�1

,�kd). Reflection also a↵ects the basis
states in the unit cell, so that for the Hamiltonian Hd(k)
reflection symmetry takes the form

Hd(k) = U †
RHd(Rk)UR, (1)

with UR a k-independent unitary matrix. We require
U2

R = 1 to fix the phase freedom in the definition of UR.
The reflection symmetry exists possibly in combination

with time-reversal (T ), particle-hole (P), and/or chiral
(C) symmetries. These symmetries take the form

Hd(k) = U †
T Hd(�k)⇤UT , (2)

Hd(k) = �U†
PHd(�k)⇤UP , (3)

Hd(k) = �U†
CHd(k)UC , (4)

where UT , UP , and UC are k-independent unitary matri-
ces. If time-reversal symmetry and particle-hole sym-
metry are both present, UC = UPU⇤

T . Further, the
unitary matrices UT , UP , and UC satisfy UT U⇤

T = T 2,
UPU⇤

P = P2, U2

C = 1, and UPU⇤
T = T 2P2UT U⇤

P . [The
condition U2

C = 1 is not fundamental, since multiplica-
tion of UC with a phase factor results in the same chiral
symmetry relation (4). We will use this condition to fix
signs in intermediate expressions for the general deriva-
tion of the Bott clock from scattering theory, but not in
the discussion of examples for specific symmetry classes.]

The three non-spatial symmetry operations T , P, and
C define the ten Altland-Zirnbauer classes.1 The two
“complex” classes have no symmetries linking H to H⇤;
the remaining eight “real” classes have time-reversal sym-
metry, particle-hole symmetry, or both. Following com-
mon practice in the field, we use Cartan labels to refer
to the corresponding symmetry classes, see Table I.
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bility reported in Refs. 42 and 43.

This article is organized as follows: In Sec. II we re-
view the constraints that reflection symmetry poses on
the Hamiltonian Hd of a gapped system in d dimensions.
In Sec. III we review the reflection-matrix-based method

of dimensional reduction originally proposed by Fulga et

al.

11 and we show how the method can be generalized
to reflection-symmetric topological insulators. The topo-
logical classification of one-dimensional topological insu-
lators with reflection symmetry using the method of rel-
ative homotopy groups and exact sequences is given in
Sec. IV. We discuss the controversial second-descendant
Z

2

phase in Sec. V. We conclude with a brief summary
in Sec. VI. Four appendices contain details of the di-
mensionless reduction scheme, an extension of the d = 1
classification to higher dimensions (i.e., without the as-
sumption of bulk-boundary correspondence, which un-
derlies the reflection-matrix-based dimensional reduction
scheme), explicit examples for topological invariants of
one-dimensional reflection-symmetric topological insula-
tors, and supporting details for the second-descendant Z

2

phase.

II. SYMMETRIES

We consider a Hamiltonian Hd(k) in d dimensions,
with k = (k

1

, k
2

, . . . , kd). For definiteness we take the
reflection plane to be perpendicular to the dth unit vec-
tor, so that reflection maps the wavevector k to Rk =
(k

1

, k
2

, . . . , kd�1

,�kd). Reflection also a↵ects the basis
states in the unit cell, so that for the Hamiltonian Hd(k)
reflection symmetry takes the form

Hd(k) = U †
RHd(Rk)UR, (1)

with UR a k-independent unitary matrix. We require
U2

R = 1 to fix the phase freedom in the definition of UR.
The reflection symmetry exists possibly in combination

with time-reversal (T ), particle-hole (P), and/or chiral
(C) symmetries. These symmetries take the form

Hd(k) = U †
T Hd(�k)⇤UT , (2)

Hd(k) = �U†
PHd(�k)⇤UP , (3)

Hd(k) = �U†
CHd(k)UC , (4)

where UT , UP , and UC are k-independent unitary matri-
ces. If time-reversal symmetry and particle-hole sym-
metry are both present, UC = UPU⇤

T . Further, the
unitary matrices UT , UP , and UC satisfy UT U⇤

T = T 2,
UPU⇤

P = P2, U2

C = 1, and UPU⇤
T = T 2P2UT U⇤

P . [The
condition U2

C = 1 is not fundamental, since multiplica-
tion of UC with a phase factor results in the same chiral
symmetry relation (4). We will use this condition to fix
signs in intermediate expressions for the general deriva-
tion of the Bott clock from scattering theory, but not in
the discussion of examples for specific symmetry classes.]

The three non-spatial symmetry operations T , P, and
C define the ten Altland-Zirnbauer classes.1 The two
“complex” classes have no symmetries linking H to H⇤;
the remaining eight “real” classes have time-reversal sym-
metry, particle-hole symmetry, or both. Following com-
mon practice in the field, we use Cartan labels to refer
to the corresponding symmetry classes, see Table I.

Antiunitary symmetries 

Unitary symmetries 

Bott periodicity for complex AZ classes 
2 period-two sequences 
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a
out

of incoming and outgoing states in the leads involves
multiplication with k?-independent unitary matrices,

Ra
in

(k?) = VR a
in

(Rk?),

Ra
out

(k?) = QRa
out

(Rk?), (20)

where Rk? = (k
2

, . . . , kd�1

,�kd) denotes the reflected
mode vector. The matrices VR and QR satisfy VRQR =
R2 = 1. The presence of reflection symmetry leads to a
constraint on the reflection matrix,

r(k?) = Q†
Rr(Rk?)VR. (21)

The algebraic relations involving the matrices QR, VR
depend on whether the reflection operation R commutes
or anticommutes with the non-spatial symmetry oper-
ations T , P, and C, QT Q⇤

R = �T VRQT , VT V ⇤
R =

�T QRVT , VPV ⇤
R = �PVRVP , QPQ⇤

R = �PQRQP ,
QCQR = �CVRQC , and VCVR = �CQRVC .
To see how the presence of reflection symmetry a↵ects

the dimensional reduction we first consider the complex
classes A and AIII. Starting from a Hamiltonian Hd in
symmetry class A with reflection symmetry R we con-
struct a Hamiltonian Hd�1

in class AIII as described
above and find that reflection symmetry imposes the con-
straint

Hd�1

(k?) = U†
RHd�1

(Rk?)UR, (22)

on Hd�1

, with

UR =

✓
QR 0
0 VR

◆
. (23)

Since UR commutes with �
3

, we conclude that dimen-
sional reduction maps the class AR to AIIIR+ . A similar
procedure can be applied to a Hamiltonian Hd in class
AIII with reflection symmetry R�C , with �C = ±. In
this case, one finds that dimensional reduction leads to
a Hamiltonian Hd�1

in class A with the additional con-
straint

Hd�1

(k?) = �CV
†
RHd�1

(Rk?)VR. (24)

This constraint has the form of a reflection symmetry if
�C = 1, i.e., if R commutes with C, but not if �C = �1,
i.e., if R anticommutes with C. Instead, if �C = �1
the constraint (24) represents the product of a reflec-
tion symmetry and a chiral symmetry. We denote such
a combined symmetry operation with the symbol “CR”.
To complete the analysis, we consider a Hamiltonian Hd

in class A with the CR symmetry constraint,

Hd(k) = �U†
CRHd(Rk)UCR, (25)

where Rk = (k
1

, k
2

, . . . , kd�1

,�kd). On the level of
the reflection matrix rd(k?) the CR symmetry is imple-
mented as

rd(k?) = Q†
CRrd(Rk?)

†VCR, (26)

where QCRVCR = 1 and Rk? = (k
2

, . . . , kd�1

,�kd). Per-
forming the dimensional reduction scheme to this Hamil-
tonian Hd, one immediately finds that Hd�1

satisfies the
constraint

Hd�1

(k?) = U †
RHd�1

(Rk?)UR, (27)

with

UR =

✓
0 QCR

VCR 0

◆
. (28)

Since UR anticommutes with �
3

, the constraint Eq. (27)
has the form of a reflection symmetry that anticommutes
with the chiral symmetry C. Combining everything, we
conclude that, once the symmetry operation CR is added,
the dimensional reduction scheme for the complex classes
with reflection symmetry leads to two period-two se-
quences,

AR d�1��! AIIIR+ d�1��! AR (29)

ACR d�1��! AIIIR� d�1��! ACR. (30)

The symmetry operation CR naturally appears in the
dimensional reduction scheme for the real classes as well.
As with the standard reflection symmetry we have to
distinguish between the cases CR�T ,P that the CR sym-
metry operation commutes (� = +”) or anticommutes
(“� = �”) with the time-reversal or particle-hole sym-
metry operations, if one of these symmetries is present.
(If both symmetries are present, there is no need to
consider CR as a separate symmetry operation.) The
relations (25) and (26) also apply to the general case.
If chiral symmetry is present, one has VCR = VCVR
and QCR = QCQR. One further has the algebraic re-
lations QT Q⇤

CR = �T VCRQT , VT V ⇤
CR = �T QCRVT ,

VPV ⇤
CR = �PVCRVP , QPQ⇤

CR = �PQCRQP . Proceed-
ing as above, one verifies that the dimensional reduction
scheme then leads to four period-eight sequences,

CIR++ d�1��! CR+ d�1��! CIIR++ d�1��! AIIR+

d�1��! DIIIR++ d�1��! DR+ d�1��! BDIR++

d�1��! AIR+ d�1��! CIR++ , (31)

CIR�� d�1��! CR� d�1��! CIIR�� d�1��! AIIR�

d�1��! DIIIR�� d�1��! DR� d�1��! BDIR��

d�1��! AIR� d�1��! CIR�� , (32)

CIR�+ d�1��! CCR+ d�1��! CIIR+� d�1��! AIICR�

d�1��! DIIIR�+ d�1��! DCR+ d�1��! BDIR+�

d�1��! AICR� d�1��! CIR�+ , (33)

CIR+� d�1��! CCR� d�1��! CIIR�+ d�1��! AIICR+

d�1��! DIIIR+� d�1��! DCR� d�1��! BDIR�+

d�1��! AICR+ d�1��! CIR+� . (34)

new subclass, C (chiral) and R (reflection) symmetries broken, CR still the symmetry 

real AZ classes 4 period-eight sequences 

CIR++ d�1��! CR+ d�1��! CIIR++ d�1��! AIIR+ d�1��! DIIIR++ d�1��! DR+ d�1��! BDIR++ d�1��! AIR+ d�1��! CIR++

CIR�� d�1��! CR� d�1��! CIIR�� d�1��! AIIR� d�1��! DIIIR�� d�1��! DR� d�1��! BDIR�� d�1��! AIR� d�1��! CIR��

CIR�+ d�1��! CCR+ d�1��! CIIR+� d�1��! AIICR� d�1��! DIIIR�+ d�1��! DCR+ d�1��! BDIR+� d�1��! AICR� d�1��! CIR�+

CIR+� d�1��! CCR� d�1��! CIIR�+ d�1��! AIICR+ d�1��! DIIIR+� d�1��! DCR� d�1��! BDIR�+ d�1��! AICR+ d�1��! CIR+�

Leads need to be attached in a reflection symmetric way 
èdimensional reduction down to d=1 
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-π π 

R-symmetry 

Hamiltonians defined on half of the BZ

at arbitrary k-point H in H0
at mirror planes H in M0

è relative homotopy group  
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Details of the derivation are given in Appendix A.
The above sequences were first derifed by Morimoto
and Furusaki but “skipping” the classes containing CR
symmetry.43 Shiozaki and Sato obtained the relations be-
tween K groups that give all the sequences derived here
as a special case.44

IV. TOPOLOGICAL CLASSIFICATION WITH
REFLECTION SYMMETRY

Having established the dimensional reduction scheme,
it is su�cient to consider the case d = 1 in order to
completely classify gapped Hamiltonians with reflection
symmetry. (The dimensional reduction scheme can not
be used down to d = 0 because there can be no reflection-
invariant lead-system interface in one dimension.) Vari-
ous methods have been used in the literature to accom-
plish this task,42–44 as discussed in the introduction or in
the review article Ref. 50.

To make this paper self-contained, we here include a
systematic classification of reflection-symmetric gapped
Hamiltonians for d = 1. We have chosen to use a di↵er-
ent method than used in Refs. 42–44, which makes use
of concepts from algebraic topology, using relative ho-
motopy groups and exact sequences. This method was
used by Turner et al. for their classification of topologi-
cal insulators with inversion symmetry.49 In App. B we
discuss how this classification method can be directly ap-
plied to reflection-symmetric Hamiltonians in dimensions
d > 1, without the use of the reflection matrix-based
dimensional reduction scheme (and, hence, without the
implicit assumption of bulk-boundary correspondence).

The construction of a topological classification for the
HamiltoniansHd requires a mathematical formalism that
endows the space of Hamiltonians with a group structure.
The theory of vector bundles and the “Grothendieck
group” provides such a formal structure, essentially us-
ing the diagonal addition of Hamiltonians as the group
addition operation. Both concepts are reviewed in a lan-
guage accessible to physicists, e.g., in Ref. 51 and in the
appendix of Ref. 49. We here employ a more informal
language, noting that a formally correct formulation re-
quires an interpretation of our statements in the frame-
work of the vector bundles and the Grothendieck group.
As in the previous Section we use the Cartan labels to
denote the space of hermitian matrices H with a gapped
spectrum for the two complex and eight real Altland-
Zirnbauer symmetry classes, see Table I.

In one dimension, we are interested in in periodic, func-
tions H(k) = H(k + 2⇡), with H(k) a gapped Hamilto-
nian, where the antiunitary symmetry operations T and
P as well as the reflection operations R and CR relate
H(k) and H(�k). It is then su�cient to consider the
Hamiltonian H(k) on the interval 0  k  ⇡ only. For
generic 0 < k < ⇡ only symmetries that relate H(k)
to itself play a role. These symmetries confine H(k) for
0 < k < ⇡ to one of the classifying spaces of table I.

M
0

H
0

FIG. 2. Schematic illustration of the spaces H0 and M0. The
solid dot indicates the trivial element. The thick curve shows
a path inH0 that starts at the trivial element and ends inM0.
Equivalence classes of such paths form the relative homotopy
group ⇡1(H0,M0).

We use the symbol H
0

to denote this space. The mo-
menta k = 0 and k = ⇡ are mapped to themselves under
k ! �k, so that H(0) and H(⇡) satisfy additional sym-
metries. We use M

0

to denote the classifying space of
Hamiltonians that also satisfy these additional symmetry
constraints. Figure 2 schematically illustrates the spaces
H

0

and M
0

.

In general a Hamiltonian H(k) can be block-
decomposed as H(k) = H(0) � H 0(k), where H 0(0) is
topologically “trivial”. The k-independent Hamiltonian
H(0) has topological indices characteristic of the zero di-
mensional case. These indices become weak indices of
one-dimensional Hamiltonian H(k). The classification of
the Hamiltonians H 0(k) gives the strong topological in-
dices.

In view these considerations, our goal is to classify
functions H 0(k) on the interval 0  k  ⇡, such that
H 0(k) is gapped, H 0(0) is trivial, H 0(⇡) 2 M

0

, and
H(k) 2 H

0

otherwise. The space of equivalence classes
(defined with respect to continuous deformations) of such
functions H 0(k) is known as the relative homotopy group

⇡
1

(H
0

,M
0

).49,52 The group ⇡
1

(H
0

,M
0

) gives the topo-
logical classification of gapped Hamiltonians with the
desired symmetries. A function H 0(k) with these con-
straints can be interpreted as a continuous “path” in H

0

,
starting at the trivial point, and ending somewhere in
M

0

, see Fig. 2.

The relative homotopy group can be calculated from
the zeroth and first homotopy groups of H

0

and M
0

,
where we recall that the zeroth homotopy groups ⇡

0

(X )
labels the connected components of a topological space
X , whereas the first homotopy group ⇡

1

(X ) contain
equivalence classes of “closed loops” in X that begin and
end at the trivial reference point. This calculation makes
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ous methods have been used in the literature to accom-
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to itself play a role. These symmetries confine H(k) for
0 < k < ⇡ to one of the classifying spaces of table I.

M
0

H
0

FIG. 2. Schematic illustration of the spaces H0 and M0. The
solid dot indicates the trivial element. The thick curve shows
a path inH0 that starts at the trivial element and ends inM0.
Equivalence classes of such paths form the relative homotopy
group ⇡1(H0,M0).

We use the symbol H
0

to denote this space. The mo-
menta k = 0 and k = ⇡ are mapped to themselves under
k ! �k, so that H(0) and H(⇡) satisfy additional sym-
metries. We use M

0

to denote the classifying space of
Hamiltonians that also satisfy these additional symmetry
constraints. Figure 2 schematically illustrates the spaces
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In general a Hamiltonian H(k) can be block-
decomposed as H(k) = H(0) � H 0(k), where H 0(0) is
topologically “trivial”. The k-independent Hamiltonian
H(0) has topological indices characteristic of the zero di-
mensional case. These indices become weak indices of
one-dimensional Hamiltonian H(k). The classification of
the Hamiltonians H 0(k) gives the strong topological in-
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In view these considerations, our goal is to classify
functions H 0(k) on the interval 0  k  ⇡, such that
H 0(k) is gapped, H 0(0) is trivial, H 0(⇡) 2 M
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, and
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).49,52 The group ⇡
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logical classification of gapped Hamiltonians with the
desired symmetries. A function H 0(k) with these con-
straints can be interpreted as a continuous “path” in H
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starting at the trivial point, and ending somewhere in
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, see Fig. 2.

The relative homotopy group can be calculated from
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class Hi
0 Mi

0 d = 1 d = 2 d = 3 d = 4
AR AI AI2 Z 0 Z 0

AIIIR+ AIII AIII2 0 Z 0 Z

ACR A AIII 0 Z

2 0 Z

2

AIIIR� AIII A Z

2 0 Z

2 0

TABLE II. The complete classification for the complex
Altland-Zirnbauer classes with reflection symmetry.

use of an “exact sequence” of mappings49

⇡
1

(M
0

)
i1
,! ⇡

1

(H
0

)
j1
,! ⇡

1

(H
0

,M
0

)

�! ⇡
0

(M
0

)
i0
,! ⇡

0

(H
0

), (35)

where a sequence of mappings is called “exact” if the
image of each mapping is the kernel of the subsequent
one. In the sequence (35), the maps i

1

, j
1

and i
0

are in-
clusion maps where the same object is interpreted as an
element of a larger space. The map � is the “boundary
map”, mapping an equivalence class of “pathes” H(k)
in ⇡

1

(H
0

,M
0

) to the connected component of their end-
pointH(⇡) inM

0

. Since the groups ⇡
1

(H
0

) and ⇡
0

(M
0

),
as well as the image of i

1

and the kernel of i
0

are known,
the relative homotopy group ⇡

1

(H
0

,M
0

) and its struc-
ture follow immediately from the exactness of the se-
quence (35). Similarly, generators for ⇡

1

(H
0

,M
0

) can
be constructed by application of the inclusion map j

1

and a suitable inverse of the boundary map �. Table I
lists the groups ⇡

0

and ⇡
1

for the classifying spaces Cn
and Rn.

To classify one-dimensional gapped Hamiltonians with
reflection symmetry, the spaces H

0

and M
0

are identi-
fied for each symmetry class, see Tables II and III, for
the two period-two “complex” sequences and for the four
period-eight “real” sequences, respectively. The relative
homotopy group ⇡

1

(H
0

,M
0

), which classifies the gapped
Hamiltonians with reflection or CR symmetry, is then
calculated from the exact sequence (35). The results of
this classification are shown in Tables II and III. In addi-
tion to the classification for d = 1, the table also lists the
results for d = 2, 3, and 4, following the Bott clock struc-
ture outlined in the previous Section. The assignment of
the spaces H

0

and M
0

for the di↵erent symmetry classes
and the details on the resolution of the exact sequence in
the nontrivial cases is discussed in detail in appendix C.

V. THE SECOND DESCENDANT Z2 PHASE

Chiu et al.

42 and Morimoto and Furusaki43 argued
that the class CIIR�� of reflection-symmetric topological
superconductors in two dimensions (d = 2) has gapless
boundary states that not protected against perturbations
that lift the discrete translation symmetry of the underly-
ing lattice. On the other hand, Shiozaki and Sato point
out that this class has a well-defined strong index, al-
though they nevertheless allow for a “subtle instability”

class Hi
0 Mi

0 d = 1 d = 2 d = 3 d = 4
AIR+ AI AI2 Z 0 0 0

BDIR++ BDI BDI2 Z2 Z 0 0
DR+ D D2

Z2 Z2 Z 0
DIIIR++ DIII DIII2 0 Z2 Z2 Z

AIIR+ AII AII2 2Z 0 Z2 Z2

CIIR++ CII CII2 0 2Z 0 Z2

CR+ C C2 0 0 2Z 0
CIR++ CI CI2 0 0 0 2Z

AIR� AII A 0 0 2Z 0
BDIR�� CII AIII 0 0 0 2Z
DR� C A Z 0 0 0

DIIIR�� CI AIII Z2 Z 0 0
AIIR� AI A Z2 Z2 Z 0
CIIR�� BDI AIII 0 Z2 Z2 Z

CR� D A 2Z 0 Z2 Z2

CIR�� DIII AIII 0 2Z 0 Z2

AICR� C CI 0 0 0 2Z2

BDIR+� CI AI Z

2 0 0 0
DCR+ AI BDI Z

2
2 Z

2 0 0
DIIIR�+ BDI D Z

2
2 Z

2
2 Z

2 0
AIICR� D DIII 0 Z

2
2 Z

2
2 Z

2

CIIR+� DIII AII 2Z2 0 Z

2
2 Z

2
2

CCR+ AII CII 0 2Z2 0 Z

2
2

CIR�+ CII C 0 0 2Z2 0

AICR+ D BDI 0 2Z 0 Z

BDIR�+ DIII D Z 0 2Z 0
DCR� AII DIII 0 Z 0 2Z

DIIIR+� CII AII 2Z 0 Z 0
AIICR+ C CII 0 2Z 0 Z

CIIR�+ CI C Z 0 2Z 0
CCR� AI CI 0 Z 0 2Z
CIR+� BDI AI 2Z 0 Z 0

TABLE III. The complete classification for the real Altland-
Zirnbauer classes with reflection symmetry.

of the topologically nontrivial state.44

The dimensional reduction scheme links class CIIR��

with d = 2 to class AIIR� in one dimension, i.e., the
reflection matrix r

2

(k?) of a two-dimensional Hamilto-
nian H

2

(k) in class CIIR�� is a one-dimensional object
with symmetries characteristic of class AIIR� . In this
Section we show that the definition of the Z

2

topological
invariant for class AIIR� is robust to the addition of per-
turbations that break the discrete translation symmetry,
consistent with the observation of Shiozaki and Sato that
there is a well-defined topological index.44 We then use
our scattering approach to show that a nontrivial value
of the invariant implies the existence of gapless states at
the boundary of the two-dimensional system.
The class AIIR� has time-reversal symmetry with

T 2 = �1. Combining the reflection and time-reversal
symmetries we arrive at

(RT )H(k)(RT ) = H(k), (36)

with (RT )2 = 1 since R and T anticommute. With-
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AIIIR+ AIII AIII2 0 Z 0 Z

ACR A AIII 0 Z

2 0 Z

2

AIIIR� AIII A Z

2 0 Z

2 0

TABLE II. The complete classification for the complex
Altland-Zirnbauer classes with reflection symmetry.

use of an “exact sequence” of mappings49

⇡
1

(M
0

)
i1
,! ⇡

1

(H
0

)
j1
,! ⇡

1

(H
0

,M
0

)

�! ⇡
0

(M
0

)
i0
,! ⇡

0

(H
0

), (35)

where a sequence of mappings is called “exact” if the
image of each mapping is the kernel of the subsequent
one. In the sequence (35), the maps i

1

, j
1

and i
0

are in-
clusion maps where the same object is interpreted as an
element of a larger space. The map � is the “boundary
map”, mapping an equivalence class of “pathes” H(k)
in ⇡

1

(H
0

,M
0

) to the connected component of their end-
pointH(⇡) inM

0

. Since the groups ⇡
1

(H
0

) and ⇡
0

(M
0

),
as well as the image of i

1

and the kernel of i
0

are known,
the relative homotopy group ⇡

1

(H
0

,M
0

) and its struc-
ture follow immediately from the exactness of the se-
quence (35). Similarly, generators for ⇡

1

(H
0

,M
0

) can
be constructed by application of the inclusion map j

1

and a suitable inverse of the boundary map �. Table I
lists the groups ⇡

0

and ⇡
1

for the classifying spaces Cn
and Rn.

To classify one-dimensional gapped Hamiltonians with
reflection symmetry, the spaces H

0

and M
0

are identi-
fied for each symmetry class, see Tables II and III, for
the two period-two “complex” sequences and for the four
period-eight “real” sequences, respectively. The relative
homotopy group ⇡

1

(H
0

,M
0

), which classifies the gapped
Hamiltonians with reflection or CR symmetry, is then
calculated from the exact sequence (35). The results of
this classification are shown in Tables II and III. In addi-
tion to the classification for d = 1, the table also lists the
results for d = 2, 3, and 4, following the Bott clock struc-
ture outlined in the previous Section. The assignment of
the spaces H

0

and M
0

for the di↵erent symmetry classes
and the details on the resolution of the exact sequence in
the nontrivial cases is discussed in detail in appendix C.

V. THE SECOND DESCENDANT Z2 PHASE

Chiu et al.

42 and Morimoto and Furusaki43 argued
that the class CIIR�� of reflection-symmetric topological
superconductors in two dimensions (d = 2) has gapless
boundary states that not protected against perturbations
that lift the discrete translation symmetry of the underly-
ing lattice. On the other hand, Shiozaki and Sato point
out that this class has a well-defined strong index, al-
though they nevertheless allow for a “subtle instability”

class Hi
0 Mi

0 d = 1 d = 2 d = 3 d = 4
AIR+ AI AI2 Z 0 0 0

BDIR++ BDI BDI2 Z2 Z 0 0
DR+ D D2

Z2 Z2 Z 0
DIIIR++ DIII DIII2 0 Z2 Z2 Z

AIIR+ AII AII2 2Z 0 Z2 Z2

CIIR++ CII CII2 0 2Z 0 Z2

CR+ C C2 0 0 2Z 0
CIR++ CI CI2 0 0 0 2Z

AIR� AII A 0 0 2Z 0
BDIR�� CII AIII 0 0 0 2Z
DR� C A Z 0 0 0

DIIIR�� CI AIII Z2 Z 0 0
AIIR� AI A Z2 Z2 Z 0
CIIR�� BDI AIII 0 Z2 Z2 Z

CR� D A 2Z 0 Z2 Z2

CIR�� DIII AIII 0 2Z 0 Z2

AICR� C CI 0 0 0 2Z2

BDIR+� CI AI Z

2 0 0 0
DCR+ AI BDI Z

2
2 Z

2 0 0
DIIIR�+ BDI D Z

2
2 Z

2
2 Z

2 0
AIICR� D DIII 0 Z

2
2 Z

2
2 Z

2

CIIR+� DIII AII 2Z2 0 Z

2
2 Z

2
2

CCR+ AII CII 0 2Z2 0 Z

2
2

CIR�+ CII C 0 0 2Z2 0

AICR+ D BDI 0 2Z 0 Z

BDIR�+ DIII D Z 0 2Z 0
DCR� AII DIII 0 Z 0 2Z

DIIIR+� CII AII 2Z 0 Z 0
AIICR+ C CII 0 2Z 0 Z

CIIR�+ CI C Z 0 2Z 0
CCR� AI CI 0 Z 0 2Z
CIR+� BDI AI 2Z 0 Z 0

TABLE III. The complete classification for the real Altland-
Zirnbauer classes with reflection symmetry.

of the topologically nontrivial state.44

The dimensional reduction scheme links class CIIR��

with d = 2 to class AIIR� in one dimension, i.e., the
reflection matrix r

2

(k?) of a two-dimensional Hamilto-
nian H

2

(k) in class CIIR�� is a one-dimensional object
with symmetries characteristic of class AIIR� . In this
Section we show that the definition of the Z

2

topological
invariant for class AIIR� is robust to the addition of per-
turbations that break the discrete translation symmetry,
consistent with the observation of Shiozaki and Sato that
there is a well-defined topological index.44 We then use
our scattering approach to show that a nontrivial value
of the invariant implies the existence of gapless states at
the boundary of the two-dimensional system.
The class AIIR� has time-reversal symmetry with

T 2 = �1. Combining the reflection and time-reversal
symmetries we arrive at

(RT )H(k)(RT ) = H(k), (36)

with (RT )2 = 1 since R and T anticommute. With-

Exact sequence (d=1) 

5

In the absence of any symmetries relation H 0(k) to
H 0(�k), H 0(k) is defined on 0  k  2⇡, and the topo-
logical classification is given by the (first) fundamen-
tal group ⇡

1

(H
0

). With symmetries relation k to �k,
each function H 0(k) is a map from (0, k) onto H

0

, with
H(0) = e

0

and H(⇡) 2 R
0

. As explained in Ref. 4 the
space of equivalence class of such maps is known as the
relative homotopy group ⇡

1

(H
0

,R
0

). The relative homo-
topy group can be calculated from the “exact sequence”

⇡
1

(R
0

)
i1
,! ⇡

1

(H
0

)
j1
,! ⇡

1

(H
0

,R
0

)

�! ⇡
0

(R
0

)
i0
,! ⇡

0

(H
0

). (35)

A sequence of mappings is called “exact” if the image of
each mapping is the kernel of the subsequent one. In the
sequence (35), the maps i

1

, j
1

and i
0

are inclusion maps
(monomorphisms) where the same object is interpreted
as an element of a larger space. (Note that R

0

naturally
is a subspace ofH

0

.) The group ⇡
0

denotes the connected
component. The map � is boundary map, mapping a
path in ⇡

1

(H
0

,R
0

) to the connected component of its
endpoint in R

0

. If the groups ⇡
1

(H
0

) and ⇡
0

(R
0

), as
well as the image of i

1

and the kernel of i
0

are known, the
relative homotopy group ⇡

1

(H
0

,R
0

) follows immediately
from the exactness of the sequence (35).

⇡
1

(H
0

,R
0

) = coker(i
1

)o ker(i
0

), (36)

where coker(i
1

) = ⇡
1

(H
0

)/i
1

[⇡
1

(R
0

].
Topological invariants for ⇡

1

(H
0

,R
0

) follow naturally
from the topological invariants of the other groups in the
exact sequence (35). Similarly, generators for ⇡

1

(H
0

,R
0

)
can be constructed by application of the inclusion map
j
1

and a suitable inverse of the boundary map �. Hereto,
note that classes of paths p in ⇡

1

(H
0

,R
0

) can be con-
structed from the endpoint r 2 R

0

and a loop l in H
0

as4

p = j
1

(l) + ��1r. (37)

The equivalence classes of r form ker[i
0

], whereas
the equivalence classes of l make up coker[i

1

] =
⇡
1

(H
0

)/⇡
1

(R
0

). The inverse mapping ��1 is not uniquely
defined which does not present a problem, an arbitrary
member of ��1r can be used to construct all topologi-
cally non-equivalent Hamiltonians in (37) in a way that
is consistent with the group structure of ⇡

0

(H
0

).
The groups ⇡

0

(H) and ⇡
1

(H) are known from the lit-
erature if the classifying space H is a symmetric space.
They are summarized in Table I, using the standard Car-
tan label to denote the space H. The classification of
one-dimensional Hamiltonians in symmetry classes A and
AIII then follows immediately, since these classes do not
involve symmetries relating k to �k. Table ?? summa-
rizes the exact sequences that give the topological classi-
fication for the Hamiltonians H(k) in the remaining eight
classes. The integer topological invariants for the chiral
symmetry classes AIII, BDI, and CII can be obtained by

Class classifying space ⇡0 ⇡1

A U(n+m)/U(n)⇥ U(m) Z 0
AIII U(n) 0 Z

AI O(n+m)/O(n)⇥O(m) Z Z2

BDI O(n) Z2 Z2

D U(2n)/U(n) Z2 0
DIII U(2n)/Sp(2n) 0 2Z
AII Sp(n+m)/Sp(n)⇥ Sp(m) 2Z 0
CII Sp(n) 0 0
C Sp(2n)/U(n) 0 0
CI U(n)/O(n) 0 Z

TABLE I. Zeroth and first fundamental groups for the sym-
metric spaces.

class H0 R0 exact sequence
AI A AI 0 ,! 0 ,! 0 ! Z ,! Z

BDI AIII BDI 0 ,! Z ,! Z ! Z2 ,! 0
D A D 0 ,! 0 ,! Z2 ! Z2 ,! 0

DIII AIII DIII 2Z ,! Z ,! Z2 ! 0 ,! 0
AII A AII 0 ,! 0 ,! 0 ! 2Z ,! 2Z
CII AIII CII 0 ,! Z ,! Z ! 0 ,! 0
C A C 0 ,! 0 ,! 0 ! 0 ,! 0
CI AIII CI Z ,! Z ,! 0 ! 0 ,! 0

TABLE II. The exact sequences for the eight real classes. The
first and last entries in the exact sequence give the image of
the inclusion maps i1 : ⇡1(R0) ,! ⇡1(H0) and i0 : ⇡0(R0) ,!
⇡0(H0).

writing

H(k) =

✓
0 r(k)

r(k) 0

◆
(38)

and are given as the winding number of det r(k) upon tak-
ing k from 0 to 2⇡. The topological invariant for Hamilto-
nians H(k) in symmetry class CII is usually denoted 2Z,
since for class CII the winding number is always even
on the interval 0  k  2⇡; for classes AIII and BDI
winding numbers may be even or odd. The topological
invariant for class D is given sign [PfH(⇡)PfH(0)], us-
ing a representation in which H(k) is antisymmetric at
k = 0,⇡. Similarly, for class DIII, writing H(k) as in Eq.
(38) there exists a representation in which r(0) and r(⇡)
are antisymmetric, and the topological invariant is given
by sign [Pf r(⇡)Pf r(0)].

B. 1d topological insulators with reflection
symmetry

In the previous subsections we showed that the exist-
ing2 classification of topological insulators with reflection
symmetry needs to be supplemented with nine additional
classes containing RC symmetry that either commutes or
anitcommutes with non-spatial symmetries. In order to
obtain the complete classification it is enough to classify
only the lowest dimensional, in this case 1D, topologi-

generators: 

ê
topological classification,
definition of topological indices
generators (Hamiltonians) 
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C. Complete classification tables of the topological
insulators with reflection symmetry

In this section we summarize the finding of the previ-
ous two sections, by giving the complete classification of
topological insulators and superconductors in arbitrary
spatial dimensions.

Table IVC gives the complete classification for the
complex AZ classes. It consist of two tables, each be-
ing two-periodic in dimension. The only discrepancy we
found with previous results2 is that Z1 should be replaced
by Z

2.

Ci
↵ class Hi

0 Ri
0 d = 1 d = 2 d = 3 d = 4

C0
+ AR AI AI2 Z 0 Z 0

C1
+ AIIIR+ AIII AIII2 0 Z 0 Z

C0
� ACR A AIII 0 Z

2 0 Z

2

C1
� AIIIR� AIII A Z

2 0 Z

2 0

TABLE III. The complete classification for the complex AZ
classes with reflection symmetry. The entries marked by red
are not in agreement with the previous findings.2

We give the complete classification of the real classes

in Table IV. This table consists of four subtables, each
being eight-periodic in dimension. We find multiple dis-
crepancies with the previously obtained results.2 Firstly,
on place of Z1 classification we find Z

2 classification. Sec-
ondly, Z

2

index referred to as first and second descendent
is interchanged in our classification. Thus we predict Z

2

classification which was previously classified with “0” and
vice-versa. Lastly, we find Z

2

2

classification for the classes
previously classified as trivial.
The symmetric spaces Hi

0

and Ri
0

defined by each sub-
class have nice property that

Hi+1

0

= ⌦Hi
0

, (68)

Ri+1

0

= ⌦Ri
0

, (69)

where ⌦ is the loops space functor. As shown in Ap-
pendix E, the above property leads to a simple classifi-
cation of the loops of reflection symmetryc Hamiltonians

⇡s(R
i
↵,�(d)) = ⇡s�1

(Ri+1

↵,� (d)), (70)

⇡s(C
i
↵(d)) = ⇡s�1

(Ci+1

↵ (d)). (71)
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Appendix A: Exact sequences in d = 1

In the Table V and VI we give the classifying space
of the H

0

, R
0

and the corresponding exact sequences
for the topological insulators and superconductors. Be-
low we give the details for the cases that need additional
considerations to resolve the sequence and that were not
considered in the main text.

1. The class CRC�

We need to prove that the image of i
1

is whole of Z
2

.
To this end it is enough to show this for a particular
example Hamiltonian

H(k) = �
3

cos k + �
1

sin k, (A1)

with symmetries T = K and P = �
2

K that represents
a loop in CI with the winding number 1. Seen as a loop
Hamiltonian in AI, it has Z

2

topological index equal to
1 (non-trivial phase in loop space of AI).

2. The class CIIR��

Similarly to the previous section, we need to show that
the image of i

1

is whole Z

2

. Consider a Hamiltonian
member of the loop space of AIII

H(k) = �
1

cos k + �
2

sin k, (A2)

with chiral symmetry given by C = �
3

and winding num-
ber “1”. In order to identify the above Hamiltonian as a
loop in BDI, we have to consider two AIII blocks related
to each other by T (P) symmetry

HBDI(k) = ⌧
3

⌦H(k), (A3)

with symmetries T = �
1

K, P = ⌧
1

�
1

K. The above
Hamiltonian is not trivial in the loop space of BDI, which
can be seen by bringing the Hamiltonian into the form
of (40) with q(k) 2 O(N), and classifying q(k), see Ap-
pendix H.

complex AZ classes 
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Ri
↵,� class Hi

0 Ri
0 d = 1 d = 2 d = 3 d = 4

R0
+,+ AIR+ AI AI2 Z 0 0 0

R1
+,+ BDIR++ BDI BDI2 Z2 Z 0 0

R2
+,+ DR+ D D2

Z2 Z2 Z 0

R3
+,+ DIIIR++ DIII DIII2 0 Z2 Z2 Z

R4
+,+ AIIR+ AII AII2 2Z 0 Z2 Z2

R5
+,+ CIIR++ CII CII2 0 2Z 0 Z2

R6
+,+ CR+ C C2 0 0 2Z 0

R7
+,+ CIR++ CI CI2 0 0 0 2Z

R0
�� AIR� AII A 0 0 2Z 0

R1
�� BDIR�� CII AIII 0 0 0 2Z

R2
�� DR� C A Z 0 0 0

R3
�� DIIIR�� CI AIII Z2 Z 0 0

R4
�� AIIR� AI A Z2 Z2 Z 0

R5
�� CIIR�� BDI AIII 0 Z2 Z2 Z

R6
�� CR� D A 2Z 0 Z2 Z2

R7
�� CIR�� DIII AIII 0 2Z 0 Z2

R0
�+ AIRC� C CI 0 0 0 2Z2

R1
�+ BDIR+� CI AI Z

2 0 0 0

R2
�+ DRC+ AI BDI Z

2
2 Z

2 0 0

R3
�+ DIIIR�+ BDI D Z

2
2 Z

2
2 Z

2 0

R4
�+ AIIRC� D DIII 0 Z

2
2 Z

2
2 Z

2

R5
�+ CIIR+� DIII AII 2Z2 0 Z

2
2 Z

2
2

R6
�+ CRC+ AII CII 0 2Z2 0 Z

2
2

R7
�+ CIR�+ CII C 0 0 2Z2 0

R0
+� AIRC+ D BDI 0 2Z 0 Z

R1
+� BDIR�+ DIII D Z 0 2Z 0

R2
+� DRC� AII DIII 0 Z 0 2Z

R3
+� DIIIR+� CII AII 2Z 0 Z 0

R4
+� AIIRC+ C CII 0 2Z 0 Z

R5
+� CIIR�+ CI C Z 0 2Z 0

R6
+� CRC� AI CI 0 Z 0 2Z

R7
+� CIR+� BDI AI 2Z 0 Z 0

TABLE IV. The complete classification for the real AZ classes
with reflection symmetry. The entries marked by red are not
in agreement with the previous findings.2

Class H0 R0 Exact sequence

AR A A2 0
i1
,! 0

j1
,! Z

�! Z

2 i0
,! Z

AIIIR+ AIII AIII2 Z

2 i1
,! Z

j1
,! 0

�! 0
i0
,! 0

ARC A AIII Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

AIIIR� AIII A 0
i1
,! Z

j1
,! Z

2 �! Z

i0
,! 0

TABLE V. The complete list of the exact sequences for d = 1
complex class topological insulators with reflection symmetry.
The table consists of two subtables, within each subtable, the
classifying spaces H0 and R0 run along the Bott clock.

3. The class CIR��

Here we show that the image of i
1

is whole of 2Z by
considering a loop in class AIII

H(k) = �
1

sin k + �
3

cos k, (A4)

Class H0 R0 Exact sequence

AIR+ AI AI2 Z

2
2

i1
,! Z2

j1
,! Z

�! Z

2 i0
,! Z

BDIR++ BDI BDI2 Z

2
2

i1
,! Z2

j1
,! Z2

�! Z

2
2

i0
,! Z2

DR+ D D2 0
i1
,! 0

j1
,! Z2

�! Z

2
2

i0
,! Z2

DIIIR++ DIII DIII2 2Z2 i1
,! 2Z

j1
,! 0

�! 0
i0
,! 0

AIIR+ AII AII2 0
i1
,! 0

j1
,! 2Z

�! 2Z2 i0
,! 2Z

CIIR++ CII CII2 0
i1
,! 0

j1
,! 0

�! Z

2 i0
,! Z

CR+ C C2 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIR++ CI CI2 Z

2 i1
,! Z

j1
,! 0

�! 0
i0
,! 0

AIR� AII A 0
i1
,! 0

j1
,! 0

�! Z

i0
,! 2Z

BDIR�� CII AIII Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

DR� C A 0
i1
,! 0

j1
,! Z

�! Z

i0
,! 0

DIIIR�� CI AIII Z

i1
,! Z

j1
,! Z2

�! 0
i0
,! 0

AIIR� AI A 0
i1
,! Z2

j1
,! Z2

�! Z

i0
,! Z

CIIR�� BDI AIII Z

i1
,! Z2

j1
,! 0

�! 0
i0
,! Z2

CR� D A 0
i1
,! 0

j1
,! 2Z

�! Z

i0
,! Z2

CIR�� DIII AIII Z

i1
,! 2Z

j1
,! 0

�! 0
i0
,! 0

AIRC� C CI Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

BDIR+� CI AI Z2
i1
,! Z

j1
,! Z

2 �! Z

i0
,! 0

DRC+ AI BDI Z2
i1
,! Z2

j1
,! Z

2
2

�! Z2
i0
,! Z

DIIIR�+ BDI D 0
i1
,! Z2

j1
,! Z

2
2

�! Z2
i0
,! Z2

AIIRC� D DIII 2Z
i1
,! 0

j1
,! 0

�! 0
i0
,! Z2

CIIR+� DIII AII 0
i1
,! 2Z

j1
,! 2Z2 �! 2Z

i0
,! 0

CRC+ AII CII 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIR�+ CII C 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

AIRC+ D BDI Z2
i1
,! 0

j1
,! 0

�! Z2
i0
,! Z2

BDIR�+ DIII D 0
i1
,! 2Z

j1
,! Z

�! Z2
i0
,! 0

DRC� AII DIII 2Z
i1
,! 0

j1
,! 0

�! 0
i0
,! 2Z

DIIIR+� CII AII 0
i1
,! 0

j1
,! 2Z

�! 2Z
i0
,! 0

AIIRC+ C CII 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIIR�+ CI C 0
i1
,! Z

j1
,! Z

�! 0
i0
,! 0

CRC� AI CI Z

i1
,! Z2

j1
,! 0

�! 0
i0
,! Z

CIR+� BDI AI Z2
i1
,! Z2

j1
,! 2Z

�! Z

i0
,! Z2

TABLE VI. The complete list of the exact sequences for d =
1 real class topological insulators and superconductors with
reflection symmetry. The table consists of four subtables,
within each subtable, the classifying spaces H0 and R0 run
along the Bott clock.

with chiral symmetry C = �
2

, the winding number “1”.
In order to see it as a loop in DIII, we have to use two
copies of the above Hamiltonian that are time reversal
partners thus

HDIII(k) = ⌧
3

⌦H(k), (A5)
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Ri
↵,� class Hi

0 Ri
0 d = 1 d = 2 d = 3 d = 4

R0
+,+ AIR+ AI AI2 Z 0 0 0

R1
+,+ BDIR++ BDI BDI2 Z2 Z 0 0

R2
+,+ DR+ D D2

Z2 Z2 Z 0

R3
+,+ DIIIR++ DIII DIII2 0 Z2 Z2 Z

R4
+,+ AIIR+ AII AII2 2Z 0 Z2 Z2

R5
+,+ CIIR++ CII CII2 0 2Z 0 Z2

R6
+,+ CR+ C C2 0 0 2Z 0

R7
+,+ CIR++ CI CI2 0 0 0 2Z

R0
�� AIR� AII A 0 0 2Z 0

R1
�� BDIR�� CII AIII 0 0 0 2Z

R2
�� DR� C A Z 0 0 0

R3
�� DIIIR�� CI AIII Z2 Z 0 0

R4
�� AIIR� AI A Z2 Z2 Z 0

R5
�� CIIR�� BDI AIII 0 Z2 Z2 Z

R6
�� CR� D A 2Z 0 Z2 Z2

R7
�� CIR�� DIII AIII 0 2Z 0 Z2

R0
�+ AIRC� C CI 0 0 0 2Z2

R1
�+ BDIR+� CI AI Z

2 0 0 0

R2
�+ DRC+ AI BDI Z

2
2 Z

2 0 0

R3
�+ DIIIR�+ BDI D Z

2
2 Z

2
2 Z

2 0

R4
�+ AIIRC� D DIII 0 Z

2
2 Z

2
2 Z

2

R5
�+ CIIR+� DIII AII 2Z2 0 Z

2
2 Z

2
2

R6
�+ CRC+ AII CII 0 2Z2 0 Z

2
2

R7
�+ CIR�+ CII C 0 0 2Z2 0

R0
+� AIRC+ D BDI 0 2Z 0 Z

R1
+� BDIR�+ DIII D Z 0 2Z 0

R2
+� DRC� AII DIII 0 Z 0 2Z

R3
+� DIIIR+� CII AII 2Z 0 Z 0

R4
+� AIIRC+ C CII 0 2Z 0 Z

R5
+� CIIR�+ CI C Z 0 2Z 0

R6
+� CRC� AI CI 0 Z 0 2Z

R7
+� CIR+� BDI AI 2Z 0 Z 0

TABLE IV. The complete classification for the real AZ classes
with reflection symmetry. The entries marked by red are not
in agreement with the previous findings.2

Class H0 R0 Exact sequence

AR A A2 0
i1
,! 0

j1
,! Z

�! Z

2 i0
,! Z

AIIIR+ AIII AIII2 Z

2 i1
,! Z

j1
,! 0

�! 0
i0
,! 0

ARC A AIII Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

AIIIR� AIII A 0
i1
,! Z

j1
,! Z

2 �! Z

i0
,! 0

TABLE V. The complete list of the exact sequences for d = 1
complex class topological insulators with reflection symmetry.
The table consists of two subtables, within each subtable, the
classifying spaces H0 and R0 run along the Bott clock.

3. The class CIR��

Here we show that the image of i
1

is whole of 2Z by
considering a loop in class AIII

H(k) = �
1

sin k + �
3

cos k, (A4)

Class H0 R0 Exact sequence

AIR+ AI AI2 Z

2
2

i1
,! Z2

j1
,! Z

�! Z

2 i0
,! Z

BDIR++ BDI BDI2 Z

2
2

i1
,! Z2

j1
,! Z2

�! Z

2
2

i0
,! Z2

DR+ D D2 0
i1
,! 0

j1
,! Z2

�! Z

2
2

i0
,! Z2

DIIIR++ DIII DIII2 2Z2 i1
,! 2Z

j1
,! 0

�! 0
i0
,! 0

AIIR+ AII AII2 0
i1
,! 0

j1
,! 2Z

�! 2Z2 i0
,! 2Z

CIIR++ CII CII2 0
i1
,! 0

j1
,! 0

�! Z

2 i0
,! Z

CR+ C C2 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIR++ CI CI2 Z

2 i1
,! Z

j1
,! 0

�! 0
i0
,! 0

AIR� AII A 0
i1
,! 0

j1
,! 0

�! Z

i0
,! 2Z

BDIR�� CII AIII Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

DR� C A 0
i1
,! 0

j1
,! Z

�! Z

i0
,! 0

DIIIR�� CI AIII Z

i1
,! Z

j1
,! Z2

�! 0
i0
,! 0

AIIR� AI A 0
i1
,! Z2

j1
,! Z2

�! Z

i0
,! Z

CIIR�� BDI AIII Z

i1
,! Z2

j1
,! 0

�! 0
i0
,! Z2

CR� D A 0
i1
,! 0

j1
,! 2Z

�! Z

i0
,! Z2

CIR�� DIII AIII Z

i1
,! 2Z

j1
,! 0

�! 0
i0
,! 0

AIRC� C CI Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

BDIR+� CI AI Z2
i1
,! Z

j1
,! Z

2 �! Z

i0
,! 0

DRC+ AI BDI Z2
i1
,! Z2

j1
,! Z

2
2

�! Z2
i0
,! Z

DIIIR�+ BDI D 0
i1
,! Z2

j1
,! Z

2
2

�! Z2
i0
,! Z2

AIIRC� D DIII 2Z
i1
,! 0

j1
,! 0

�! 0
i0
,! Z2

CIIR+� DIII AII 0
i1
,! 2Z

j1
,! 2Z2 �! 2Z

i0
,! 0

CRC+ AII CII 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIR�+ CII C 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

AIRC+ D BDI Z2
i1
,! 0

j1
,! 0

�! Z2
i0
,! Z2

BDIR�+ DIII D 0
i1
,! 2Z

j1
,! Z

�! Z2
i0
,! 0

DRC� AII DIII 2Z
i1
,! 0

j1
,! 0

�! 0
i0
,! 2Z

DIIIR+� CII AII 0
i1
,! 0

j1
,! 2Z

�! 2Z
i0
,! 0

AIIRC+ C CII 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIIR�+ CI C 0
i1
,! Z

j1
,! Z

�! 0
i0
,! 0

CRC� AI CI Z

i1
,! Z2

j1
,! 0

�! 0
i0
,! Z

CIR+� BDI AI Z2
i1
,! Z2

j1
,! 2Z

�! Z

i0
,! Z2

TABLE VI. The complete list of the exact sequences for d =
1 real class topological insulators and superconductors with
reflection symmetry. The table consists of four subtables,
within each subtable, the classifying spaces H0 and R0 run
along the Bott clock.

with chiral symmetry C = �
2

, the winding number “1”.
In order to see it as a loop in DIII, we have to use two
copies of the above Hamiltonian that are time reversal
partners thus

HDIII(k) = ⌧
3

⌦H(k), (A5)
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Ri
↵,� class Hi

0 Ri
0 d = 1 d = 2 d = 3 d = 4

R0
+,+ AIR+ AI AI2 Z 0 0 0

R1
+,+ BDIR++ BDI BDI2 Z2 Z 0 0

R2
+,+ DR+ D D2

Z2 Z2 Z 0

R3
+,+ DIIIR++ DIII DIII2 0 Z2 Z2 Z

R4
+,+ AIIR+ AII AII2 2Z 0 Z2 Z2

R5
+,+ CIIR++ CII CII2 0 2Z 0 Z2

R6
+,+ CR+ C C2 0 0 2Z 0

R7
+,+ CIR++ CI CI2 0 0 0 2Z

R0
�� AIR� AII A 0 0 2Z 0

R1
�� BDIR�� CII AIII 0 0 0 2Z

R2
�� DR� C A Z 0 0 0

R3
�� DIIIR�� CI AIII Z2 Z 0 0

R4
�� AIIR� AI A Z2 Z2 Z 0

R5
�� CIIR�� BDI AIII 0 Z2 Z2 Z

R6
�� CR� D A 2Z 0 Z2 Z2

R7
�� CIR�� DIII AIII 0 2Z 0 Z2

R0
�+ AIRC� C CI 0 0 0 2Z2

R1
�+ BDIR+� CI AI Z

2 0 0 0

R2
�+ DRC+ AI BDI Z

2
2 Z

2 0 0

R3
�+ DIIIR�+ BDI D Z

2
2 Z

2
2 Z

2 0

R4
�+ AIIRC� D DIII 0 Z

2
2 Z

2
2 Z

2

R5
�+ CIIR+� DIII AII 2Z2 0 Z

2
2 Z

2
2

R6
�+ CRC+ AII CII 0 2Z2 0 Z

2
2

R7
�+ CIR�+ CII C 0 0 2Z2 0

R0
+� AIRC+ D BDI 0 2Z 0 Z

R1
+� BDIR�+ DIII D Z 0 2Z 0

R2
+� DRC� AII DIII 0 Z 0 2Z

R3
+� DIIIR+� CII AII 2Z 0 Z 0

R4
+� AIIRC+ C CII 0 2Z 0 Z

R5
+� CIIR�+ CI C Z 0 2Z 0

R6
+� CRC� AI CI 0 Z 0 2Z

R7
+� CIR+� BDI AI 2Z 0 Z 0

TABLE IV. The complete classification for the real AZ classes
with reflection symmetry. The entries marked by red are not
in agreement with the previous findings.2

Class H0 R0 Exact sequence

AR A A2 0
i1
,! 0

j1
,! Z

�! Z

2 i0
,! Z

AIIIR+ AIII AIII2 Z

2 i1
,! Z

j1
,! 0

�! 0
i0
,! 0

ARC A AIII Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

AIIIR� AIII A 0
i1
,! Z

j1
,! Z

2 �! Z

i0
,! 0

TABLE V. The complete list of the exact sequences for d = 1
complex class topological insulators with reflection symmetry.
The table consists of two subtables, within each subtable, the
classifying spaces H0 and R0 run along the Bott clock.

3. The class CIR��

Here we show that the image of i
1

is whole of 2Z by
considering a loop in class AIII

H(k) = �
1

sin k + �
3

cos k, (A4)

Class H0 R0 Exact sequence

AIR+ AI AI2 Z

2
2

i1
,! Z2

j1
,! Z

�! Z

2 i0
,! Z

BDIR++ BDI BDI2 Z

2
2

i1
,! Z2

j1
,! Z2

�! Z

2
2

i0
,! Z2

DR+ D D2 0
i1
,! 0

j1
,! Z2

�! Z

2
2

i0
,! Z2

DIIIR++ DIII DIII2 2Z2 i1
,! 2Z

j1
,! 0

�! 0
i0
,! 0

AIIR+ AII AII2 0
i1
,! 0

j1
,! 2Z

�! 2Z2 i0
,! 2Z

CIIR++ CII CII2 0
i1
,! 0

j1
,! 0

�! Z

2 i0
,! Z

CR+ C C2 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIR++ CI CI2 Z

2 i1
,! Z

j1
,! 0

�! 0
i0
,! 0

AIR� AII A 0
i1
,! 0

j1
,! 0

�! Z

i0
,! 2Z

BDIR�� CII AIII Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

DR� C A 0
i1
,! 0

j1
,! Z

�! Z

i0
,! 0

DIIIR�� CI AIII Z

i1
,! Z

j1
,! Z2

�! 0
i0
,! 0

AIIR� AI A 0
i1
,! Z2

j1
,! Z2

�! Z

i0
,! Z

CIIR�� BDI AIII Z

i1
,! Z2

j1
,! 0

�! 0
i0
,! Z2

CR� D A 0
i1
,! 0

j1
,! 2Z

�! Z

i0
,! Z2

CIR�� DIII AIII Z

i1
,! 2Z

j1
,! 0

�! 0
i0
,! 0

AIRC� C CI Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

BDIR+� CI AI Z2
i1
,! Z

j1
,! Z

2 �! Z

i0
,! 0

DRC+ AI BDI Z2
i1
,! Z2

j1
,! Z

2
2

�! Z2
i0
,! Z

DIIIR�+ BDI D 0
i1
,! Z2

j1
,! Z

2
2

�! Z2
i0
,! Z2

AIIRC� D DIII 2Z
i1
,! 0

j1
,! 0

�! 0
i0
,! Z2

CIIR+� DIII AII 0
i1
,! 2Z

j1
,! 2Z2 �! 2Z

i0
,! 0

CRC+ AII CII 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIR�+ CII C 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

AIRC+ D BDI Z2
i1
,! 0

j1
,! 0

�! Z2
i0
,! Z2

BDIR�+ DIII D 0
i1
,! 2Z

j1
,! Z

�! Z2
i0
,! 0

DRC� AII DIII 2Z
i1
,! 0

j1
,! 0

�! 0
i0
,! 2Z

DIIIR+� CII AII 0
i1
,! 0

j1
,! 2Z

�! 2Z
i0
,! 0

AIIRC+ C CII 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIIR�+ CI C 0
i1
,! Z

j1
,! Z

�! 0
i0
,! 0

CRC� AI CI Z

i1
,! Z2

j1
,! 0

�! 0
i0
,! Z

CIR+� BDI AI Z2
i1
,! Z2

j1
,! 2Z

�! Z

i0
,! Z2

TABLE VI. The complete list of the exact sequences for d =
1 real class topological insulators and superconductors with
reflection symmetry. The table consists of four subtables,
within each subtable, the classifying spaces H0 and R0 run
along the Bott clock.

with chiral symmetry C = �
2

, the winding number “1”.
In order to see it as a loop in DIII, we have to use two
copies of the above Hamiltonian that are time reversal
partners thus

HDIII(k) = ⌧
3

⌦H(k), (A5)

10

Ri
↵,� class Hi

0 Ri
0 d = 1 d = 2 d = 3 d = 4

R0
+,+ AIR+ AI AI2 Z 0 0 0

R1
+,+ BDIR++ BDI BDI2 Z2 Z 0 0

R2
+,+ DR+ D D2

Z2 Z2 Z 0

R3
+,+ DIIIR++ DIII DIII2 0 Z2 Z2 Z

R4
+,+ AIIR+ AII AII2 2Z 0 Z2 Z2

R5
+,+ CIIR++ CII CII2 0 2Z 0 Z2

R6
+,+ CR+ C C2 0 0 2Z 0

R7
+,+ CIR++ CI CI2 0 0 0 2Z

R0
�� AIR� AII A 0 0 2Z 0

R1
�� BDIR�� CII AIII 0 0 0 2Z

R2
�� DR� C A Z 0 0 0

R3
�� DIIIR�� CI AIII Z2 Z 0 0

R4
�� AIIR� AI A Z2 Z2 Z 0

R5
�� CIIR�� BDI AIII 0 Z2 Z2 Z

R6
�� CR� D A 2Z 0 Z2 Z2

R7
�� CIR�� DIII AIII 0 2Z 0 Z2

R0
�+ AIRC� C CI 0 0 0 2Z2

R1
�+ BDIR+� CI AI Z

2 0 0 0

R2
�+ DRC+ AI BDI Z

2
2 Z

2 0 0

R3
�+ DIIIR�+ BDI D Z

2
2 Z

2
2 Z

2 0

R4
�+ AIIRC� D DIII 0 Z

2
2 Z

2
2 Z

2

R5
�+ CIIR+� DIII AII 2Z2 0 Z

2
2 Z

2
2

R6
�+ CRC+ AII CII 0 2Z2 0 Z

2
2

R7
�+ CIR�+ CII C 0 0 2Z2 0

R0
+� AIRC+ D BDI 0 2Z 0 Z

R1
+� BDIR�+ DIII D Z 0 2Z 0

R2
+� DRC� AII DIII 0 Z 0 2Z

R3
+� DIIIR+� CII AII 2Z 0 Z 0

R4
+� AIIRC+ C CII 0 2Z 0 Z

R5
+� CIIR�+ CI C Z 0 2Z 0

R6
+� CRC� AI CI 0 Z 0 2Z

R7
+� CIR+� BDI AI 2Z 0 Z 0

TABLE IV. The complete classification for the real AZ classes
with reflection symmetry. The entries marked by red are not
in agreement with the previous findings.2

Class H0 R0 Exact sequence

AR A A2 0
i1
,! 0

j1
,! Z

�! Z

2 i0
,! Z

AIIIR+ AIII AIII2 Z

2 i1
,! Z

j1
,! 0

�! 0
i0
,! 0

ARC A AIII Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

AIIIR� AIII A 0
i1
,! Z

j1
,! Z

2 �! Z

i0
,! 0

TABLE V. The complete list of the exact sequences for d = 1
complex class topological insulators with reflection symmetry.
The table consists of two subtables, within each subtable, the
classifying spaces H0 and R0 run along the Bott clock.

3. The class CIR��

Here we show that the image of i
1

is whole of 2Z by
considering a loop in class AIII

H(k) = �
1

sin k + �
3

cos k, (A4)

Class H0 R0 Exact sequence

AIR+ AI AI2 Z

2
2

i1
,! Z2

j1
,! Z

�! Z

2 i0
,! Z

BDIR++ BDI BDI2 Z

2
2

i1
,! Z2

j1
,! Z2

�! Z

2
2

i0
,! Z2

DR+ D D2 0
i1
,! 0

j1
,! Z2

�! Z

2
2

i0
,! Z2

DIIIR++ DIII DIII2 2Z2 i1
,! 2Z

j1
,! 0

�! 0
i0
,! 0

AIIR+ AII AII2 0
i1
,! 0

j1
,! 2Z

�! 2Z2 i0
,! 2Z

CIIR++ CII CII2 0
i1
,! 0

j1
,! 0

�! Z

2 i0
,! Z

CR+ C C2 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIR++ CI CI2 Z

2 i1
,! Z

j1
,! 0

�! 0
i0
,! 0

AIR� AII A 0
i1
,! 0

j1
,! 0

�! Z

i0
,! 2Z

BDIR�� CII AIII Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

DR� C A 0
i1
,! 0

j1
,! Z

�! Z

i0
,! 0

DIIIR�� CI AIII Z

i1
,! Z

j1
,! Z2

�! 0
i0
,! 0

AIIR� AI A 0
i1
,! Z2

j1
,! Z2

�! Z

i0
,! Z

CIIR�� BDI AIII Z

i1
,! Z2

j1
,! 0

�! 0
i0
,! Z2

CR� D A 0
i1
,! 0

j1
,! 2Z

�! Z

i0
,! Z2

CIR�� DIII AIII Z

i1
,! 2Z

j1
,! 0

�! 0
i0
,! 0

AIRC� C CI Z

i1
,! 0

j1
,! 0

�! 0
i0
,! 0

BDIR+� CI AI Z2
i1
,! Z

j1
,! Z

2 �! Z

i0
,! 0

DRC+ AI BDI Z2
i1
,! Z2

j1
,! Z

2
2

�! Z2
i0
,! Z

DIIIR�+ BDI D 0
i1
,! Z2

j1
,! Z

2
2

�! Z2
i0
,! Z2

AIIRC� D DIII 2Z
i1
,! 0

j1
,! 0

�! 0
i0
,! Z2

CIIR+� DIII AII 0
i1
,! 2Z

j1
,! 2Z2 �! 2Z

i0
,! 0

CRC+ AII CII 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIR�+ CII C 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

AIRC+ D BDI Z2
i1
,! 0

j1
,! 0

�! Z2
i0
,! Z2

BDIR�+ DIII D 0
i1
,! 2Z

j1
,! Z

�! Z2
i0
,! 0

DRC� AII DIII 2Z
i1
,! 0

j1
,! 0

�! 0
i0
,! 2Z

DIIIR+� CII AII 0
i1
,! 0

j1
,! 2Z

�! 2Z
i0
,! 0

AIIRC+ C CII 0
i1
,! 0

j1
,! 0

�! 0
i0
,! 0

CIIR�+ CI C 0
i1
,! Z

j1
,! Z

�! 0
i0
,! 0

CRC� AI CI Z

i1
,! Z2

j1
,! 0

�! 0
i0
,! Z

CIR+� BDI AI Z2
i1
,! Z2

j1
,! 2Z

�! Z

i0
,! Z2

TABLE VI. The complete list of the exact sequences for d =
1 real class topological insulators and superconductors with
reflection symmetry. The table consists of four subtables,
within each subtable, the classifying spaces H0 and R0 run
along the Bott clock.

with chiral symmetry C = �
2

, the winding number “1”.
In order to see it as a loop in DIII, we have to use two
copies of the above Hamiltonian that are time reversal
partners thus

HDIII(k) = ⌧
3

⌦H(k), (A5)

real AZ classes 

second descendant Z2 
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