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! Natural ground states of quantum many-body systems are very little      
  entangled in a precise sense. This allows for computational methods based  
  on tensor networks as well as new ways for their mathematical study.”

! This talk: Find out what that means

! Area laws for entanglement entropies

! Matrix-product states and operators

! Applications: Grounds states, open systems, many-body localisation

! Lecture 1:
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! Natural ground states of quantum many-body systems are very little      
  entangled in a precise sense. This allows for computational methods based  
  on tensor networks as well as new ways for their mathematical study.”

! This talk: Find out what that means

! Lecture 2:

! Symmetries

! Classification of phases

! Projected entangled pair states, application: t-J model
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! Natural ground states of quantum many-body systems are very little      
  entangled in a precise sense. This allows for computational methods based  
  on tensor networks as well as new ways for their mathematical study.”

! This talk: Find out what that means

! Notions of topological order

! Toric codes and topological quantum memories

! Lecture 3:

! Fermionic models and topological order
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Area laws for the entanglement entropy
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! Ground states of local gapped models

Clustering of correlations

H =
X

j

hj

Hastings, Koma, Commun Math Phys 3, 443 (1992) 

�E = inf
| i2H\G

h |H| i � E0

E0

�E
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A

B

! Ground states of local gapped models

Clustering of correlations

H =
X

j

hj

Hastings, Koma, Commun Math Phys 3, 443 (1992) 

|hOAOBi � hOAihOBi|  Ce�dist(A,B)�E/(2v)kOAk kOBk

! Exponentially clustering correlations
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! Area law for the entanglement entropy                                         :

A

S(⇢A)

S(⇢A) = O(|@A|)

Area laws for entanglement entropies

Eisert, Cramer, Plenio, Rev Mod Phys 82, 277 (2010) 
Hastings, JSTAT, P08024 (2007)
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! Area law for the entanglement entropy                                         :S(⇢A)

S(⇢A) = O(|@A|)

! Scale like boundary area, not volume: Much less entangled than possible!

Area laws for entanglement entropies

Eisert, Cramer, Plenio, Rev Mod Phys 82, 277 (2010) 
Hastings, JSTAT, P08024 (2007)
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! Area law for the entanglement entropy                                         :S(⇢A)

S(⇢A) = O(|@A|)

! Scale like boundary area, not volume: Much less entangled than possible!

! Theorem: Area laws hold true for 
    
  1. arbitrary gapped models in 1D 
  2. free bosonic and fermionic gapped Hamiltonians in any D  
  3. Stabiliser Hamiltonians (as in quantum codes)

Eisert, Cramer, Plenio, Rev Mod Phys 82, 277 (2010) 
Hastings, JSTAT, P08024 (2007)
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! Area law for the entanglement entropy                                         :S(⇢A)

S(⇢A) = O(|@A|)

! Scale like boundary area, not volume: Much less entangled than possible!

! Theorem: Area laws hold true for 
    
  1. arbitrary gapped models in 1D 
  2. free bosonic and fermionic gapped Hamiltonians in any D  
  3. Stabiliser Hamiltonians (as in quantum codes)

! Entanglement entropies tool for detecting topological entropy

S(⇢A) = ↵|@A|� � +O(|@A|��)

�

Eisert, Cramer, Plenio, Rev Mod Phys 82, 277 (2010) 
Hastings, JSTAT, P08024 (2007)

Kitaev and J. Preskill, Phys Rev Lett 96, 110404 (2006) 
Levin and Wen, Phys Rev Lett 96, 110405 (2006) 
Bauer, Cincio, Keller, Dolfi, Vidal, Trebst, Ludwig, Nature Comm 5, 5137 (2014) 
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! Area law for the entanglement entropy                                         :S(⇢A)

S(⇢A) = O(|@A|)

! Scale like boundary area, not volume: Much less entangled than possible!

All quantum states
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! Area law for the entanglement entropy                                         :S(⇢A)

S(⇢A) = O(|@A|)

! Scale like boundary area, not volume: Much less entangled than possible!

 

! Entanglement captures “essential degrees of freedom, 
  hugely removes redundancy”

States satisfying an area law

All quantum states “Physical corner”

! Can this be used to largely “parametrise” states?
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Matrix-product states
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! This is a scalar ! Vectors and dual vectors

Tensor networks

! This is a matrix

C↵,� =
NX

�=1

A↵,�B�,� A B = C

! Contraction of edge: Summation

! E.g., matrix product

! Trace

! Graphical notation of tensors of varying degree

! Tensor network with open edges
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1 2 3 4 n. . .
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1 2 3 4 n. . .

Matrix-product states (MPS)

! Drastic (!) reduction of parameters:  

  

  from           to O(dn) O(dD2n)

! Why would this be any good?

! Matrix product (finitely correlated) states

White, Phys Rev Lett 69, 2863 (1992) 
Fannes, Nachtergaele, Werner, Commun Math Phys 3, 443 (1992) 

↵ �A(k)

jk

↵,� = 1, . . . , D
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1 2 3 4 n. . .

! Theorem: ! All MPS satisfy area lawsS(⇢A) = O(log(D))

Matrix-product states (MPS)
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1 2 3 4 n. . .

! Theorem: ! All MPS satisfy area laws 

  

                   !  All states that satisfy area laws for Renyi entropies 

                      have efficient approximation in       -norm (                    ) 

S(⇢A) = O(log(D))

S↵
(⇢A) = log tr⇢↵A/(1� ↵)

↵ < 1

k.k1

Verstraete, Cirac, Murg, Adv Phys 57, 143 (2008) 
Eisert, Cramer, Plenio, Rev Mod Phys 82, 277 (2010) 

Matrix-product states (MPS)

poly(n, 1/✏)

 

Matrix product states

All quantum states

! MPS “largely parametrize the physical corner”

D
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Getting it to work: Ground states
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. . .

Contraction of MPS

! How can local expectation values be computed?

OX = hOXi

! Naively not!
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. . .

Contraction of MPS

! How can local expectation values be computed?

OX = hOXi

= 2 CD2
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. . .

Contraction of MPS

! How can local expectation values be computed?

OX = hOXi

= =: E 2 CD2⇥D2

Transfer operator
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. . .

Contraction of MPS

! How can local expectation values be computed?

OX = hOXi

=OX EO
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. . .

Contraction of MPS

! How can local expectation values be computed?

OX = hOXi

=
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. . .

Contraction of MPS

! How can local expectation values be computed?

OX = hOXi

! Gives rise to effort of            - perfectly efficient!O(D4)
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. . .

Contraction of MPS

! Basis of DMRG (density matrix renormalisation group method)

OX = hOXi

White, Phys Rev Lett 69, 2863 (1992) 

Landau, Vazirani, Vidick, Nature Physics 11, 566 (2015)
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. . .

Contraction of MPS

! Basis of DMRG (density matrix renormalisation group method)

OX = hOXi

White, Phys Rev Lett 69, 2863 (1992) 

Landau, Vazirani, Vidick, Nature Physics 11, 566 (2015)

! Lots of variants: B.B (eigenvalue problem)

! Can be reduced to            , exploiting gauge freedomO(D3)

= Z Z�1

Schollwoeck, Ann Phys 326, 96 (2011)
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. . .

Contraction of MPS

! Basis of DMRG (density matrix renormalisation group method)

OX = hOXi

White, Phys Rev Lett 69, 2863 (1992) 

! Lots of variants: B.B (eigenvalue problem), B..B (SVD), etc

! Rigorous efficient approximation for gapped models
Landau, Vazirani, Vidick, Nature Physics 11, 566 (2015)
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. . .

Contraction of MPS

! Basis of DMRG (density matrix renormalisation group method)

OX = hOXi

White, Phys Rev Lett 69, 2863 (1992) 

! Extremely well-developed in 1D
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! Extremely well-developed in 1D

. . .

! Basis of DMRG (density matrix renormalisation group method)

! Rigorous efficient approximation for gapped models

OX = hOXi

White, Phys Rev Lett 69, 2863 (1992) 

Landau, Vazirani, Vidick, Nature Physics 11, 566 (2015)

 

! Ground states to machine precision

Phase diagram of Bose-Hubbard model

Plaquette current on a t-J-V-V ladder

White, Phys Rev Lett 69, 2863 (1992) 
Ejima, Fehske, Gebhard, EPL 93, 30002 (2011)  
Schollwoeck, Chakravarty, Fjaerestad, Marston, Troyer, Phys Rev Lett 90, 186401 (2003) 
Eisert, Mod Sim 3, 520 (2013) 
Eisert, Cramer, Plenio, Rev Mod Phys 82, 277 (2010) 
Barthel, Schollwoeck, White, Phys Rev B 79, 245101 (2009) 
Schollwoeck, Ann Phys 326, 96 (2011) 
Orus, Ann Phys 349, 17 (2014)

DMRG-approach

Phase diagram of a two-leg Hubbard ladder

H = �
n�1X

j=1

⇣
b†jbj+1 + b†j+1bj

⌘
� U

2

nX

j=1

nj(nj � 1)
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! How can the decay of correlations be computed?

. . .

Decay of correlations

. . . . . .OA OB

= E =
DX

j=1

(Aj ⌦ Āj)

 

! So

! Write powers of transfer operators as

! Gives

! Correlation functions                                    decay exponentially in    

  on length scale                              (“inverse gap of transfer operator”)

|hOAOBi � hOAihOBi| dist(A,B)

⇠�1
= � log

|�2|
|�1|

hOAOBi =
tr(EOAE

dist(A,B)�1EOBE
n�dist(A,B)�1)

tr(En)

Ek = �1|r1ihl1|+
D2X

k=2

�k
j |rjihlj |

hOAOBi = �1hl1|EOA |r1ihl1|EOB |l1i+
D2X

j=2

�
dist(A,B)�1
j hl1|EOA |rjihlj |EOB |l1i
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More of a good thing: Non-equilibrium, thermal  
and open systems, and many-body localisation
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! Thermal states, open systems, mixed quantum states?

⇢ =

! Matrix-product operators (MPO)
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! Thermal states, open systems, mixed quantum states?

⇢ =

! Matrix-product operators (MPO)

↵ �

↵,� = 1, . . . , D
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! Thermal states, open systems, mixed quantum states?

⇢ =

! Matrix-product operators (MPO)

! Very practical - theory less slightly well understood

! Theorem: Positivity of an MPO is undecidable

Kliesch, Gross, Eisert, Phys Rev Lett 113, 160503 (2014) 
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! Matrix-product operators for thermal states

Temperature dependence of 1D isotropic Heisenberg model

Verstraete, Garcia-Ripoll, Cirac, Phys Rev Lett 93, 207204 (2004) 
Karrasch, Bardarson, Moore, Phys Rev Lett 108, 227206 (2012)

H = �
n�1X

j=1

✓
J

2

�
S+
j Sj+1 + S�

j S+
j�1

�
+ JzSz

j S
z
j+1

◆
� h

nX

j=1

Sz
j

! Provably exist for high temperature states
Kliesch, Gogolin, Kastoryano, Riera, Eisert, Phys Rev X 4, 031019 (2014) 
Ge, Molnár, Cirac, Phys Rev Lett 116, 080503 (2016) 
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| (0)i =

! Out-of-equilibrium dynamics: Quenches e�itH | (0)i
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! Out-of-equilibrium dynamics: Quenches

| (0)i =

Apply suitable Trotter formula

e�itH | (0)i =

e�itH | (0)i

Schollwoeck, Ann Phys 326, 96 (2011)
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| (0)i =

e�itH | (0)i =

Contract to MPO

! Gives - for short times - an efficient algorithm for out-of-equilibrium

! Out-of-equilibrium dynamics: Quenches e�itH | (0)i
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| (0)i =

e�itH | (0)i =

Contract to MPO

! Gives - for short times - an efficient algorithm for out-of-equilibrium

 

! For long-times, the “physical corner” no longer applicable:  
  Exponential growth of bond dimension    in time for given  
        -error

Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100, 030602 (2008) 
Schuch, Wolf, Verstraete, Cirac, Phys Rev Lett 100, 030504 (2008) 

D
k.k1

! Out-of-equilibrium dynamics: Quenches e�itH | (0)i

 

! Quenched quantum many-body systems 

Out of equilibrium Bose-Hubbard 
dynamics in momentum space

Dynamics of cold atoms in optical super-lattices 
compared with experimental data in quantum  
simulators

Trotzky, Chen, Flesch, McCullock, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012) 
Daley, Kollath, Schollwock, Vidal, J Stat Mech, P04005 (2004) 

H = �
n�1X

j=1

⇣
b†jbj+1 + b†j+1bj

⌘
� U

2

nX

j=1

nj(nj � 1)
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! Open or driven quantum many-body systems

! Describe environment by Markovian Lindblad quantum master equation

@t⇢ = �i[H, ⇢] + 
X

j

✓
Lj⇢L

†
j �

1

2
{L†

jLj , ⇢}
◆

Coherent part Dissipative part

=: L(⇢)

! Preparation of topologically non-trivial states as stationary states L(⇢) = 0

Diehl, Micheli, Kantian, Krais, Buechler, Zoller, Nature Phys 5, 878 (2008) 
Verstraete, Wolf, Cirac, Nature Phys 5, 633 (2009) 
Herold, Campbell, Eisert, Kastoryano, Nature P J Quant Inf (2015)
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! Open or driven quantum many-body systems

! Describe environment by Markovian Lindblad quantum master equation

! Of key interest in CRC 183 for preparation of topologically non-trivial states  
   as stationary states

@t⇢ = �i[H, ⇢] + 
X

j

✓
Lj⇢L

†
j �

1

2
{L†

jLj , ⇢}
◆

Coherent part Dissipative part

=: L(⇢)

L(⇢) = 0

Diehl, Micheli, Kantian, Krais, Buechler, Zoller, Nature Phys 5, 878 (2008) 
Verstraete, Wolf, Cirac, Nature Phys 5, 633 (2009) 
Herold, Campbell, Eisert, Kastoryano, Nature P J Quant Inf (2015)

! Positive MPO for open quantum systems

Verstraete,  Garcia-Ripoll, Cirac, Phys Rev Lett 93, 207204 (2004) 
Werner, Jaschke, Silvi, Kliesch, Calarco, Eisert, Montangero, Phys Rev Lett 116, 237201 (2016) 
Zwolak, Vidal, Phys Rev Lett 93, 207205 (2004).

⇢ =

Excitation population in a dissipative 
spin-cavity-model

Positive matrix-product operator

⇢ � 0
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! Many-body localisation: Intriguing phenomenon in which disorder and  
  interactions come together

Pal, Huse, Phys Rev B 82, 174411 (2010) 
Bauer, Nayak, J Stat Mech P09005 (2013) 
Basko, Aleiner, Altshuler, Ann Phys 321, 1126 (2006) 
Znidaric, Prosen, Prelovsek, PRB 77, 064426 (2008)  
Badarson, Pollmann, Moore, PRL 109, 017202 (2012) 
Friesdorf, Werner, Scholz, Brown, Eisert, PRL 114, 170505 (2015) 
Friesdorf, Werner, Goihl, Eisert, Brown, New J Phys 17, 113054 (2015)  

H = �
n�1X

j=1

✓
J

2

�
S+
j Sj+1 + S�

j S+
j�1

�
+ JzSz

j S
z
j+1

◆
�

nX

j=1

hjS
z
j
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! Rich phenomenology: !  Absence of thermalisation and transport

! Many-body localisation: Intriguing phenomenon in which disorder and  
  interactions come together

! Logarithmic growth of entanglement entropies

! Linearly many approx local constants of motion

! Area laws and MPS eigenstates of excited states

Pal, Huse, Phys Rev B 82, 174411 (2010) 
Bauer, Nayak, J Stat Mech P09005 (2013) 
Basko, Aleiner, Altshuler, Ann Phys 321, 1126 (2006) 
Znidaric, Prosen, Prelovsek, PRB 77, 064426 (2008)  
Badarson, Pollmann, Moore, PRL 109, 017202 (2012) 
Friesdorf, Werner, Scholz, Brown, Eisert, PRL 114, 170505 (2015) 
Friesdorf, Werner, Goihl, Eisert, Brown, New J Phys 17, 113054 (2015)  
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! Dynamical reading: Absence  
  of (particle) transport

! All eigenstates are MPS follows from dynamical localisation

! Finding local constants of motion:  
 
     Minimise  

 subject to MPO bond-dimension  
 and support constraints

k[Z, H]k2

Kim, Bañuls, Cirac, Hastings, Huse, Phys. Rev. E 92, 012128 (2015)  
Nebendahl, Goihl, Brown, Werner, Eisert, in preparation (2016)

k[ZL, H]k2

L

! Combine Wegner-flow and MPO-simulations: Full MPO representation
Orus, Schmidt, Eisert, in preparation (2016)

Friesdorf, Werner, Scholz, Brown, Eisert, PRL 114, 170505 (2015) 

! Can be used in X-DMRG and variants
Khemani, Pollmann, Sondhi, Phys Rev Lett 116, 247204 (2016) 
Karrasch, Kennes, arXiv:1511:02205

! Diagonalisation to l-bit form via  
   quasi-local unitary

Pollmann, Khemani, Cirac, Sondhi, Phys Rev B 94, 041116 (2016)  
Wahl, Pal, Simon, arXiv:1609.01552
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! Quantum chemistry: Interacting fermions

H =
nX

j=1

 
�1

2
r2

j �
X

I

ZI

rj,I

!
+
X

j<k

1

rj,k

H =
X

j,k

hj,kc
†
jck +

1

2

X

j,k,l,m

Vj,k,l,mc†jc
†
kclcm

! In second quantisation, long-ranged interacting model, 

   long-ranged DMRG methods can be applied
White, Martin, J Chem Phys 110, 4127 (1999) 
Chan, Head-Gordon, J Chem Phys 116, 4462 2002) 
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! DMRG outperforms CI for strongly correlated models, if orbital  
  optimisation is applied for (based on Renyi entanglement entropies)

Krumnow, Veis, Legeza, Eisert, Phys Rev Lett 117 (2016)

| i 7! G| i = exp

✓X

j,k

c†j(logU
†
)j,kck

◆
| i

G

Applications in quantum chemistry
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! Lesson so far: Matrix-product states and operators versatile and powerful  
  tool to capture 1D strongly correlated systems in the “physical corner”

Matrix product states

All quantum states

D

Lesson
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Thanks for your attention!

Area laws deliniating the  
“physical corner” 

Matrix-product states for 
one-dimensional systems 

Matrix-product operators: 
thermal and open systems 
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Tensor network states
An entanglement based approach to numerical simulations of strongly  
correlated matter and analytical studies of topological order 

Jens Eisert, Freie Universität Berlin  
The Capri Spring School 2017 
Solid-state quantum information processing
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! This morning’s message: In 1D, MPS capture the “physical corner”

! Now: Asserted topics: 2D, quantum phases,  
  MERA, quantum simulations

! Tomorrow: Topological order
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Going higher-dimensional
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! Idea for 2D systems: Projected entangled pair states (PEPS)

A(k)

�

�

↵ �

↵, . . . , � = 1, . . . , D

! Again, versatile numerical method

Verstraete, Cirac, cond-mat/0407066 
Martin-Delgado, cond-mat/9610196
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! PEPS still satisfy an area law for the entanglement entropy S(⇢A) = O(|@A|)
! Note that the converse is strictly speaking not true

! Theorem: There exists translationally invariant states satisfying all area laws  
 
  
   for all          , yet they cannot be efficiently approximated to constant error in  
         -norm by any projected entangled pair state

S↵(⇢A) = O(|@A|)

↵ � 0
k.k1

Ge, Eisert, New J Phys 18, 083026 (2016) 
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! PEPS still satisfy an area law for the entanglement entropy 

! PEPS still define transfer matrices

=: E

S(⇢A) = O(|@A|)
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! PEPS still satisfy an area law for the entanglement entropy 

! PEPS can have algebraically decaying correlations

! PEPS still define transfer matrices
S(⇢A) = O(|@A|)
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! PEPS still satisfy an area law for the entanglement entropy 

! PEPS can have algebraically decaying correlations

! PEPS can in practice be efficiently contracted

! PEPS still define transfer matrices

! Cute twist:

! Theorem: PEPS contraction is #P-complete

Schuch, Wolf, Verstraete, Cirac, Phys Rev Lett 98, 140506 (2007)

! One cannot efficient compute expectation values in worst case  
  complexity, which created a puzzle, but….

! Theorem: PEPS that approximate ground states […] well, can be  
  contracted in quasi-polynomial time  
  Schwarz, Buerschaper, Eisert, arXiv:1606.06301

S(⇢A) = O(|@A|)
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! PEPS still satisfy an area law for the entanglement entropy 

! PEPS capture topological order and classify phases of matter

S(⇢A) = O(|@A|)

! PEPS can have algebraically decaying correlations

! PEPS can in practice be efficiently contracted

! PEPS still define transfer matrices
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! Idea for 2D systems: Projected entangled pair states (PEPS)

A(k)

�

�

↵ �

↵, . . . , � = 1, . . . , D
 

! Finite PEPS and iPEPS: Excellent numerical performance

Orus, Ann Phys 349, 17 (2014)

Spin-3/2 AKLT spin liquids
Lavoie at al, Nature Phys 6, 850 (2010)

Shustry-Sutherland model
Corboz, arXiv:1605.03006
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! Idea for 2D systems: Projected entangled pair states (PEPS)

A(k)

�

�

↵ �

↵, . . . , � = 1, . . . , D

 

! For fermions “sign-problem free”

Pineda, Barthel, Eisert, Phys Rev A 81, 050303 (2010)  
Corboz, Evenbly, Verstraete, Vidal, Phys Rev A 81, 010303 (2010)

Ground state energies  
in the t-J model

Fermionic tensor networks

Corboz, arXiv:1605.03006

2D Hubbard model: In strongly correlated                                    regime, iPEPS outperforms other  
state of the art algorithms in the ground state energy

U/t = 8, n = 0.875

Corboz, Phys Rev B 93, 045116 (2016)
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The idea of a parent Hamiltonian
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! Message from now on

! Putting the emphasis on states, not Hamiltonians, allows for  
  powerful mathematical methods to capture phases of matter
! The deliniation of the “physical corner”his allows for devising  
  computational methods based on tensor networks.

! Message until now

Aim of today
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! Are there Hamiltonians that have exact MPS ground states?
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! Are there Hamiltonians that have exact MPS ground states?

! As preparation: “PEPS projection”

(|0, 1i � |1, 0i)/
p
2

P PP =
dX

k=1

DX

↵,�=1

A↵,�;k|kih↵,�|
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! Are there Hamiltonians that have exact MPS ground states?

! Take physical dimension           , a spin-1 model, and bond dimension  d = 3 D = 2

Affleck, Kennedy, Lieb, Tasaki, Phys Rev Lett 59, 799 (1987)

hj
! Now                     , then hj = ⇧S=2 hj | i = 0

! In the PEPS picture take                                   , where            is projection onto 
   spin-1 subspace of two sites 

! Gives rise to valid MPS

P = ⇧S=1(I⌦ iY ) ⇧S=1

P P

S = 0
| i

Reduced state 
orthogonal to

S =
1

2
S =

1

2

S = 2

(|0, 1i � |1, 0i)/
p
2
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! But all      are positive, so  hj

! That is,       must be a ground state vector | i

Parent Hamiltonians

! Are there Hamiltonians that have exact MPS ground states?

hj

P P

S = 0S =
1

2
S =

1

2

h |H| i = h |
X

j

hj | i � 0

Affleck, Kennedy, Lieb, Tasaki, Phys Rev Lett 59, 799 (1987)
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! But all      are positive, so  hj

! That is,       must be a ground state vector | i

Parent Hamiltonians

! Are there Hamiltonians that have exact MPS ground states?

hj

h |H| i = h |
X

j

hj | i � 0

! Resembles spin-1 Heisenberg model 

hj =
1

2
S(j) · S(j+1) +

1

6
(S(j) · S(j+1))2 +

1

3

! Famous AKLT (Affleck, Kennedy, Lieb, Tasaki) model 

Affleck, Kennedy, Lieb, Tasaki, Phys Rev Lett 59, 799 (1987)
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! Are there Hamiltonians that have exact MPS ground states?

! Theorem: All MPS and PEPS have frustration-free parent Hamiltonians 
                                       ,                     H =

X

j

hj hj | i = 0

A A

X

= 0

A A

X

⇢ ⇢hj

hj = P
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! An MPS is injective if                                                 has a left inverse 

Injective tensor network states

P =
dX

k=1

DX

↵,�=1

A↵,�;k|kih↵,�|

! Intuitively, this means that we can achieve any action on the virtual  
  indices by acting on the physical spins

! Theorem: All injective MPS and PEPS have frustration-free parents 
                                       ,                      

   to which they are the unique ground state

H =
X

j

hj hj | i = 0
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! Injective PEPS do not allow for degeneracies

! In the tensor network program, emphasis is on states, not Hamiltonians:  
  The latter are reinserted by the concept of a parent Hamiltonian

Injective tensor network states
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Symmetries and phases of matter in 1D
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! The Hamiltonians      and      are in the same phase 

Quantum phases

H0 H1

H0
H1
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! The Hamiltonians      and      are in the same phase if there ex. a     such that upon  
  blocking of    sites, both       and       are two-local  

Quantum phases

H0 H1 k
k H0 H1

H0 =
X

i

h0(i, i+ 1) H1 =
X

i

h1(i, i+ 1)

! There exists a translationally invariant path               , continuous, with 

   such that 

� 7! h�

H� =
X

i

h� , 0  �  1

||h� ||  1

!       has a spectral gap above the ground state manifold, bounded from below  
  by            independent of the system size
H�

� > 0

H0
H1

0 1
�

�
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! Phases in 1D are defined in terms of ground state degeneracy
! Specifically, every ground state of a non-degenerate Hamiltonian is in  
   same phase as trivial product state

Schuch, Perez-Garcia, Cirac, Phys Rev B 84, 165139 (2011) 
Pollmann, Turner, Berg, Oshikawa, Phys Rev B 81, 064439 (2010) 
Chen, Gu, Wen, Phys Rev B 83, 035107 (2011) 
Nietner, Krumnow, Bergholtz, Eisert, arXiv:1704.02992
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! A Hamiltonian acting on         has a local symmetry if there is a linear unitary  
   representation      of some group            acting on     such that 

H⌦n

Ug G 3 g H
[H,U⌦n

g ] = 0

Ug Ug Ug

Phases with symmetries

Schuch, Perez-Garcia, Cirac, Phys Rev B 84, 165139 (2011) 
Pollmann, Turner, Berg, Oshikawa, Phys Rev B 81, 064439 (2010) 
Chen, Gu, Wen, Phys Rev B 83, 035107 (2011) 
Nietner, Krumnow, Bergholtz, Eisert, arXiv:1704.02992



Area laws MPS MPO PEPS Phases TopoPhases with symmetries

! Roughly: Being in the same phase while preserving the local symmetry

! Precisely:     and      are in the same phase under the symmetry    if there ex.  
   a phase gauge for       and       and a representation of  

   defined on                                       and an interpolating path                with  
   the above properties, such that  

  and       and       are supported on         and        , respectively 

H0 H1 G
U0
g U1

g G

� 7! H�

Ug = U0
g � U1

g � Upath
g

H = H0 �H1 �Hpath

[H� , U
⌦n
g ] = 0

H0 H1 H⌦n
0 H⌦n

1

Ug Ug Ug

Schuch, Perez-Garcia, Cirac, Phys Rev B 84, 165139 (2011) 
Pollmann, Turner, Berg, Oshikawa, Phys Rev B 81, 064439 (2010) 
Chen, Gu, Wen, Phys Rev B 83, 035107 (2011) 
Nietner, Krumnow, Bergholtz, Eisert, arXiv:1704.02992
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! Symmetry of state vectors

Ug Ug Ug

Ug ⌦ · · ·⌦ Ug| i = ei�gn| i

Ug Ug Ug

! Linear representation
UgUh = Ugh Vg!      projective unitary representation of 

Vg

Ug

= V †
g

G

! Symmetry of MPS (exists standard form s.t.)

VgVh = ei!(g,h)Vgh

Schuch, Perez-Garcia, Cirac, Phys Rev B 84, 165139 (2011) 
Pollmann, Turner, Berg, Oshikawa, Phys Rev B 81, 064439 (2010) 
Chen, Gu, Wen, Phys Rev B 83, 035107 (2011) 
Nietner, Krumnow, Bergholtz, Eisert, arXiv:1704.02992
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Ug Ug Ug

! Non-degenerate ground states:
! Phases are defined in terms of 2nd cohomology classes of the projective  
   representations of the group G

! Degenerate ground states:
! Phases are defined in terms of 2nd cohomology classes of the induced projective  
   representations of the group G

Schuch, Perez-Garcia, Cirac, Phys Rev B 84, 165139 (2011) 
Pollmann, Turner, Berg, Oshikawa, Phys Rev B 81, 064439 (2010) 
Chen, Gu, Wen, Phys Rev B 83, 035107 (2011) 
Nietner, Krumnow, Bergholtz, Eisert, arXiv:1704.02992
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MERA and the AdS-cft correspondence



Area laws MPS MPO PEPS Phases TopoMulti-scale entanglement renormalisation

! More elaborate tensor networks capture critical quantum systems
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! More elaborate tensor networks capture critical quantum systems

! “Multi-scale entanglement renormalisation”

! Interlaced renormalisation steps and disentanglers
Vidal, Phys Rev Lett 101, 110501 (2008)
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! More elaborate tensor networks capture critical quantum systems

! “Multi-scale entanglement renormalisation”

! Interlaced renormalisation steps and disentanglers

! Efficient contraction

Causal cone
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! More elaborate tensor networks capture critical quantum systems

! “Multi-scale entanglement renormalisation”

! Interlaced renormalisation steps and disentanglers

! Efficient contraction

Causal cone

 

! MERA performance

Dawson, Eisert, Osborne, Phys Rev Lett 100, 130501 (2008)  
Vidal, Rizzi, Montangero, Vidal, Phys Rev A 77, 052328 (2008) 
Evenbly, Vidal, Phys Rev Lett 116, 040401 (2016)   
Glen Evenbly, Phys Rev B 95, 045117 (2017) 
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! More elaborate tensor networks capture critical quantum systems

! Seen as toy model for AdS-cft correspondence

! Random tensor networks: Haar random isometries
Nozaki, Ryu, Takayanagi, JHEP10, 193 (2012)

Qi, Yang, You, arXiv:1703.06533 
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Three slides on quantum simulations  
(hommage to Enrique)
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! Quenched cold atoms many-body dynamics outperforms 
  classical supercomputers (10.000 atoms)

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

Multi-scale entanglement renormalisation

! Think of quantum simulators outperforming classical supercomputers

Best available MPS  
simulation (D=5000) on 
Jülich supercomputers

! Devil’s advocate: But maybe there is a simple description?
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! Boson sampling with photons: Sampling from 
  a distribution close in 1-norm to quantum  
  distribution is computationally hard

Aaronson, Arkhipov, Proceedings of ACM Symposium on the  
Theory of Computing, STOC (2011)

Multi-scale entanglement renormalisation

! Think of quantum simulators outperforming classical supercomputers

! Common prejudice: In order to verify a quantum simulation,  
  one has to be able to classically keep track of it

Gogolin, Kliesch, Aolita, Eisert, arXiv:1306.3995 
Trevisan, Tulsiani, Vadhan, Proc IEEE Conf Comp Complex, 126 (2009)

! Output cannot be distinguished from efficiently preparable distribution
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! Think of quantum simulators outperforming classical supercomputers

! The correctness of quantum simulations can sometimes be certified,  
  even if one cannot predict the outcome!  

! (i) With disordered initial state, quenched Ising dynamics

   one can sample from IQP circuits (“hard problem”), but now one can also

! (ii) non-adaptive local measurements (50x50 lattice)

! (iii) efficiently certify correctness of prepared state (PEPS)
Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, arXiv:1703.00466  
Compare Boixo, Isakov, Smelyanskiy, Babbush, Ding, Jiang,  Martinis, Neven, arXiv:1608.00263. 
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Shifting emphasis from  
Hamiltonians to states 

Classifying phases  
of matter 

MERA

Capturing topological order 
 

Sneak preview:

Thanks for your attention!
Quantum simulations
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Tensor network states
An entanglement based approach to numerical simulations of strongly  
correlated matter and analytical studies of topological order 

Jens Eisert, Freie Universität Berlin  
The Capri Spring School 2017 
Solid-state quantum information processing
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! Natural ground states of quantum many-body systems are very little      
  entangled in a precise sense. This allows for computational methods based  
  on tensor networks as well as new ways for their mathematical study.”
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Topological order
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! Fractional quantum Hall effect, spin liquids etc, see Alex’s talk

! A new kind of order: Topological order
! Resonating valence bond states (RVB), quantum dimer models (QDM)

(|0, 1i � |1, 0i)/
p
2

Singlet

! Configuration: covering of the lattice
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! Fractional quantum Hall effect, spin liquids etc, see Alex’s talk

! A new kind of order: Topological order
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! Definition of topological order

! Degeneracy of the Hamiltonian constant and depends on topology 
! All GS are locally indistinguishable (no local order parameter)

! To map between them, you need a non-local operator
! Excitations behave like quasi-particles with anyonic statistics

A new type of order
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! Injective PEPS do not do it, as unique GS, need a bit more…

! How can it be captured in PEPS? 

A new type of order
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Toric code as a paradigmatic example
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Kitaev, quant-ph/9707021 
Dennis, Kitaev, Landahl, Preskill, J Math Phys 43, 4452 (2002) 
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! Spins on edges of cubic lattice

X

X

X

X

Y

j2+

Xj
! Star operators 

  (flux at plaquette)
Y

j2⇤
Zj

! Plaquette operators 

   (charge at vertex)
Z Z

Z

Z

⇤jZj | i = +j | i = | i

! Hamiltonian

! Star and plaquette operators act trivially on ground state of Hamiltonian

H = �J
X

k

2

4
Y

j2⇤k

Zj +
Y

j2+k

Xj

3

5

Kitaev, quant-ph/9707021 
Dennis, Kitaev, Landahl, Preskill, J Math Phys 43, 4452 (2002) 
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Z Z

Z

Z

Z Z

Z

Z
! Can define string operators

Kitaev, quant-ph/9707021 
Dennis, Kitaev, Landahl, Preskill, J Math Phys 43, 4452 (2002) 
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! Degeneracy of the Hamiltonian constant and depends on topology 

! All GS are locally indistinguishable (no local order parameter)

! To map between them, you need a non-local operator

! Excitations behave like quasi-particles with anyonic statistics

! Gapped, frustration-free Hamiltonian

Toric code

! Ground state formed by closed loop configurations

! Shows     -topological orderZ2

Kitaev, quant-ph/9707021 
Dennis, Kitaev, Landahl, Preskill, J Math Phys 43, 4452 (2002) 

(4 on the torus)
✔

✔

(Strings around the torus)
✔

(   - anyons on vertices 
     - anyons on plaquettes)
e

m

✔
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! Degeneracy of the Hamiltonian constant and depends on topology 

! All GS are locally indistinguishable (no local order parameter)

! To map between them, you need a non-local operator

! Excitations behave like quasi-particles with anyonic statistics

Toric code

! Shows     -topological orderZ2

Kitaev, quant-ph/9707021 
Dennis, Kitaev, Landahl, Preskill, J Math Phys 43, 4452 (2002) 

(4 on the torus)
✔

✔

(Strings around the torus)
✔

(   - anyons on vertices 
     - anyons on plaquettes)
e

m

✔
! Anyonic excitations 

   -    -anyons on vertices

  

Herold, Campbell, Eisert, Kastoryano, Nature P J Quant Inf (2015) 
Herold, Campbell, Kastoryano, Eisert, Phys Rev A (2016)

Landau, Plugge, Sela, Altland, Albrecht, Egger, Phys Rev Lett 
116, 050501 (2016) 

! Topological quantum memory protecting quantum information
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! Degeneracy of the Hamiltonian constant and depends on topology 

! All GS are locally indistinguishable (no local order parameter)

! To map between them, you need a non-local operator

! Excitations behave like quasi-particles with anyonic statistics

Toric code

! Shows     -topological orderZ2

Kitaev, quant-ph/9707021 
Dennis, Kitaev, Landahl, Preskill, J Math Phys 43, 4452 (2002) 

(4 on the torus)
✔

✔

(Strings around the torus)
✔

(   - anyons on vertices 
     - anyons on plaquettes)
e

m

✔
! Anyonic excitations 

   -    -anyons on vertices

  

Herold, Campbell, Eisert, Kastoryano, Nature P J Quant Inf (2015) 
Herold, Campbell, Kastoryano, Eisert, Phys Rev A (2016)

Landau, Plugge, Sela, Altland, Albrecht, Egger, Phys Rev Lett 
116, 050501 (2016) 

! Topological quantum memory protecting quantum information

 

Litinski, Kesselring, Eisert, von Oppen, arXiv:1704.01589 

! Realistic implementations of color codes: Daniel yesterday
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Topological order in PEPS
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! Gauge symmetry:
! Let    be any finite group, e.g., G G = Z2 = {1, Z}

Z Z

Z

Z

=

Z Z

Z

Z

Z

Z

=
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=

Z

Z Z

Z Z

Z

Z

Z

ZZ

Z

Z

! Contractible loops of    vanishZ

 ! What about loops that are non-contractible?

Topology in PEPS
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Z

Z

Z

Z

! Non-contractible loops can be arbitrarily deformed but they do not vanish

Z

Topology in PEPS

=

Z

Z

Z

Z

Z

Z

Z

Z

! New ground states of parent Hamiltonian (which are locally equal)
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=

Z

Z

Z

! Open strings can be deformed, except from end points (quasi-particles)

Z

Z

Z

Z

Z

Excitations as open strings

! All of them have the same energy, they can move freely

X

X

X

X
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!    -injective PEPS: Symmetry group    is acting on virtual indices and PEPS  
   tensors are left-invariant on the    -invariant subspace
G G

G

! Require less than full injectivity

Schuch, Cirac, Perez-Garcia, Ann Phys 325, 2153 (2010)
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!    -injective PEPS: Symmetry group    is acting on virtual indices and PEPS  
   tensors are left-invariant on the    -invariant subspace
G G

G

!    -isometric PEPS: All PEPS tensors are isometriesG

! For    - isometric PEPS, it is possible to unitarily transform between any two  
  states in ground space by acting on two stripes wrapping around the torus

! Require less than full injectivity

Schuch, Cirac, Perez-Garcia, Ann Phys 325, 2153 (2010)

G



Area laws MPS MPO PEPS Phases Topo

! For    - isometric PEPS, the states in the ground subspace cannot be  
  distinguished by local operations (acting on topologically trivial region)

G-injective and G-isometric PEPS

!    -injective PEPS: Symmetry group    is acting on virtual indices and PEPS  
   tensors are left-invariant on the    -invariant subspace
G G

G

!    -isometric PEPS: All PEPS tensors are isometriesG

! Require less than full injectivity

Schuch, Cirac, Perez-Garcia, Ann Phys 325, 2153 (2010)

G
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! For    - isometric PEPS, the entanglement entropy of any topologically  
  trivial subregion is given by 

! Here                is the topological correction to the area law   

G-injective and G-isometric PEPS

!    -injective PEPS: Symmetry group    is acting on virtual indices and PEPS  
   tensors are left-invariant on the    -invariant subspace
G G

G

!    -isometric PEPS: All PEPS tensors are isometriesG

! Require less than full injectivity

Schuch, Cirac, Perez-Garcia, Ann Phys 325, 2153 (2010)

S(⇢A) = log |G||@A|� log |G|

� log |G|

G
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! We recover topological order

! Degeneracy of the Hamiltonian constant and depends on topology 
! All GS are locally indistinguishable (no local order parameter)

! To map between them, you need a non-local operator
! Excitations behave like quasi-particles with anyonic statistics

✔
✔
✔
✔
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! Good enough to capture toric code, quantum double models etc

! Take            , suitable for universal topological quantum computation
! Not capturing string net models

G = S3

Levin, Wen, Phys Rev B 71, 045110 (2005)

! Can a complete understanding of topological order be  
  achieved in terms of PEPS?

Kitaev Ann Phys 303, 2 (2003)
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! Can a complete understanding of topological order be  
  achieved in terms of PEPS?

A complete picture?
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MPO-injective PEPS
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! Virtual symmetries

=

!    -symmetryG

=

! MPO-symmetry

Şahinoğlu, Williamson, Bultinck, Mariën, Haegeman, Schuch, Verstraete, arXiv:1409.2150
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! Virtual symmetries

= =

!    -symmetryG ! MPO-symmetry

D = 1 D > 1

! Uncorrelated products ! Matrix-product operator

! Groups ! Twisted groups and more

Şahinoğlu, Williamson, Bultinck, Mariën, Haegeman, Schuch, Verstraete, arXiv:1409.2150
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Z

Z

Z

Z

Z

Beyond G-injective PEPS

=
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=
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! Stable under concatenation

=
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! Stable under concatenation

=
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! MPO symmetry

=
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! MPO symmetry

! MPO projector
=
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! MPO symmetry

! MPO projector
=

! MPO injectivity

9 :
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! MPO symmetry

! MPO projector
=

! MPO injectivity

! Stability under concatenation
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! MPO symmetry

! MPO projector

! MPO injectivity

! Stability under concatenation

! Topological correction to area law

S(⇢A) = c|@A|� �

! Can compute:

! Ground state space

Şahinoğlu, Williamson, Bultinck, Mariën, Haegeman, Schuch, Verstraete, arXiv:1409.2150
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! MPO symmetry

! MPO projector

! MPO injectivity

! Stability under concatenation

! Topological correction to area law

S(⇢A) = c|@A|� �

! Can compute:

! Ground state space

! Anyonic statistics:    and    matricesS T

Şahinoğlu, Williamson, Bultinck, Mariën, Haegeman, Schuch, Verstraete, arXiv:1409.2150
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! MPO symmetry

! MPO projector

! MPO injectivity

! Stability under concatenation

! Topological correction to area law

S(⇢A) = c|@A|� �

! Can compute:

! Ground state space

! Anyonic statistics:    and    matricesS T

! Captures Levin-Wen string net models
Levin, Wen, Phys Rev B 71, 045110 (2005) 
Gu, Levin, Swingle, Wen, Phys Rev B 79, 085118 (2009).

Şahinoğlu, Williamson, Bultinck, Mariën, Haegeman, Schuch, Verstraete, arXiv:1409.2150
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Towards tensor networks for fermionic systems
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! Tensors with physical fermions
! Book-keeping of the order (manual)

Wille, Buerschaper, Eisert, arXiv:1609.02574



Area laws MPS MPO PEPS Phases Topo

                        even

Axioms of MPO-injectivity

! Tensors with physical fermions

! Add virtual fermions
! Book-keeping of the order (manual)

! Book-keeping of the order (in-built)

#( )
! Fermionic entangled pairs                            

! Grassmann numbers                           

Wille, Buerschaper, Eisert, arXiv:1609.02574 
Williamson, Bultinck, Haegeman, Verstraete, arXiv:1609.02897
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! Fermionic MPOs
! Axioms take analogous form

! Graded algebratic structure

! Axioms fulfillable?

=

Wille, Buerschaper, Eisert, arXiv:1609.02574
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! Edges: Spin 1/2

! Vertices: Fermions

H =
X

v

Qv +
X

p

Qp

Qv =
1

2
(1 +

Y

i2v

�Z
i )Fv

Qp =
1

2
(1 +

Y

i2p

�X
i )Fp

Gu, Wang, Wen, Phys Rev B 90, 085140 (2014)
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! Dual lattice

! Grassmann numbers

Wille, Buerschaper, Eisert, arXiv:1609.02574
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! Dual lattice

! Grassmann numbers

Wille, Buerschaper, Eisert, arXiv:1609.02574

Fermionic MPO-injectivity

A =
X

Ap1p2p3v1v2v3
pf1f2f3

✓p✓f1 ✓̄f2 ✓̄f3 |p1, p2, p3ihv1, v2, v3|
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! Dual lattice

! Grassmann numbers

Wille, Buerschaper, Eisert, arXiv:1609.02574

Fermionic MPO-injectivity

! Virtual symmetries with branching structure* 

  *Edges of PEPS tensor are oriented such that no cyclic orientation arises
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! Dual lattice

! Grassmann numbers

! Virtual symmetries with branching structure

Fermionic MPO-injectivity

Purely bosonic      
to ensure  
concatenation

T+

T�
Y

at edges parallel to  
MPO direction

     at edges anti- 
parallel to MPO direction

Wille, Buerschaper, Eisert, arXiv:1609.02574

! Theorem: Construction satisfies axioms

! Can compute properties, e.g., ground state degeneracy

! Interesting physical models?
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! Can all be shown to satisfy framework (tedious)

Twisted fermionic double models

Wille, Buerschaper, Eisert, arXiv:1609.02574 
Bultinck, Williamson, Haegeman, Verstraete, arXiv:1610.07849

! Twisted fermionic quantum doubles (instances of fermionic string nets)

! Graded group cohomology: Triple 

! Group    , defining bosonic degrees of freedom

! 2-cocycle                 , governing coupling 

s(a, b) + s(ab, c) + s(a, bc) + s(b, c) = 0

! Graded 3-cocycle 
!(a, b, c)!(a, bc, d)!(b, c, d) = (�1)s(a,b)s(c,d)!(ab, c, d)!(a, b, cd)

H2(G,Z2)

H3
f (G,U(1), s)

G

(G, s,!)

otherwise

! G = Z2

! s(1, 1) = 1, s = 0

! Fermionic toric code: Simplest triple
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Wille, Buerschaper, Eisert, arXiv:1609.02574 
Williamson, Bultinck, Haegeman, Verstraete, arXiv:1609.02897

! Consistent framework of topological PEPS for fermionic systems
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Wille, Buerschaper, Eisert, arXiv:1609.02574 
Williamson, Bultinck, Haegeman, Verstraete, arXiv:1609.02897

! Consistent framework of topological PEPS for fermionic systems

Ising anyons in frustration-free  
Majorana dimer models
Ware, Son, Cheng, Mishmash, Alicea, Bauer, arXiv:1605.06125 

Discrete spin structures and commuting  
projector models for 2d fermionic symmetry  
protected topological phases 
Tarantino, Fidowski, Phys Rev B 94, 115115 (2016)

! Capture them as fermionic PEPS?
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! Consistent framework of topological PEPS for fermionic systems

Ising anyons in frustration-free  
Majorana dimer models
Ware, Son, Cheng, Mishmash, Alicea, Bauer, arXiv:1605.06125 

Discrete spin structures and commuting  
projector models for 2d fermionic symmetry  
protected topological phases 
Tarantino, Fidowski, Phys Rev B 94, 115115 (2016)

! Capture them as fermionic PEPS?
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Thanks for your attention!

! Natural ground states of quantum many-body systems are very little      
  entangled in a precise sense. This allows for computational methods based  
  on tensor networks as well as new ways for their mathematical study.”


