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SSH-Hubbard model

H = −J ′
M∑

i=1,σ

c†2iσc2i−1σ − J
M−1∑
i=1,σ

c†2i+1σc2iσ + H.c .+ U
2M∑
i=1

ni↑ni↓

I Strongly interacting regime: U > 4J

I Doublons cannot decay due to energy conservation

I Effective Hamiltonian for doublons?

C. E. Creffield & G. Platero, PRB 69, 165312; PRL 105, 086804
K. Winkler et al., Nature 441, 853-856
S. Wall et al., Nat. Phys. 7, 114-118
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Single occupancy spectrum

I We want to project out states we are not interested in

I Unitary transformation that block-diagonalizes the
Hamiltonian, perturbatively in powers of J/U and J ′/U up to
first order.
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Topological long-range transfer

U = 16J; a) λ = 0.5, b) λ = 1
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Floquet theory and HFE

H(t) = Hhopp + HU + E cos(ωt)
2M∑
i=1

xi (ni↑ + ni↓)

For time-periodic Hamiltonians, H(t + T ) = H(t), the
fundamental solutions to the Schrödinger equation are of the form:

ψ(x, t) = e−iεntφn(x, t)

U(t2, t1) = e−iK(t2)e−iHeff (t2−t1)e iK(t1)

Heff = H [0] +
1

ω
H [1] +

1

ω2
H [2] + · · · (1)

M. Bukov, L. D’Alessio & A. Polkovnikov, Adv. Phys. 2015, Vol.
64, No. 2, 139-226
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– The ac field allows to tune the ratio between hopping and ∆µ
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b0 = a0/2; c) J0(Ea0/ω) = 0.7, d) J0(Ea0/ω) = 0.3

Shockley edge states

These edge states also form a non-local two level system and allow
the long-range transfer
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I Long-range transfer of particles can be produced in a dimer
chain thanks to the presence of edge states

I With the HFE we can derive an effective Hamiltonian which
includes both the interaction between particles and the
periodic driving

I Doublon edge states do not occur naturally in the dimer
chain. However, they can be induced by different means:

– Adding gate potentials → Topological transfer

– Driving the system with an AC field → Shockley transfer

– Combination of both → AC induced topological transfer
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Thank you!


