

Non-local transport of strongly-interacting fermions via topological and Shockley edge states

M. Bello¹ C. E. Creffield² G. Platero¹

¹Instituto de Ciencias de Materiales de Madrid (CSIC).

²Departameto de Física de Materiales, Universidad Complutense de Madrid.

April 12, 2016

Scientific Reports 6, 22562 (2016)

► Floquet engineered systems

Floquet engineered systems

Coupling a static system to a **periodic driving** we are able to realize experimentally many quantum-mechanical models

Floquet engineered systems

Coupling a static system to a **periodic driving** we are able to realize experimentally many quantum-mechanical models

For example:

Floquet engineered systems

Coupling a static system to a **periodic driving** we are able to realize experimentally many quantum-mechanical models

For example:

- Haldane model: G. Jotzu et al., Nature **515** 237-240 (2014)

Floquet engineered systems

Coupling a static system to a **periodic driving** we are able to realize experimentally many quantum-mechanical models

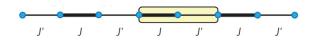
For example:

- Haldane model: G. Jotzu et al., Nature **515** 237-240 (2014)
- Harper-Hofstadter model: M. Aidelsburguer et al., Nat. Phys.
 11 162-166 (2015)

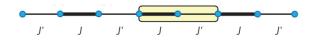
► Topological phases of matter

- ► Topological phases of matter
 - SSH Model: 1D lattice with staggered hoppings

- Topological phases of matter
 - SSH Model: 1D lattice with staggered hoppings

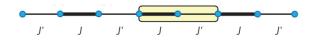


- ► Topological phases of matter
 - SSH Model: 1D lattice with staggered hoppings



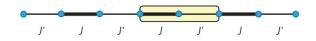
Ratio between hoppings: $\lambda = \frac{J'}{J}$

- Topological phases of matter
 - SSH Model: 1D lattice with staggered hoppings



Ratio between hoppings: $\lambda = \frac{J'}{J}$ If $\lambda > 1 \Rightarrow$ Trivial phase

- Topological phases of matter
 - SSH Model: 1D lattice with staggered hoppings



Ratio between hoppings: $\lambda = \frac{J'}{J}$

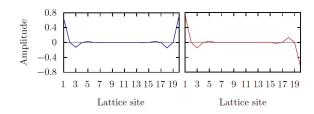
If $\lambda > 1 \Rightarrow$ Trivial phase

If $\lambda < 1 \Rightarrow$ Topological phase (Edge states)

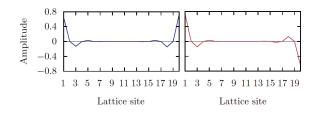
P. Delplace, PRB 84, 195452

- ► Topological phases of matter
 - SSH Model: 1D lattice with staggered hoppings

- Topological phases of matter
 - SSH Model: 1D lattice with staggered hoppings

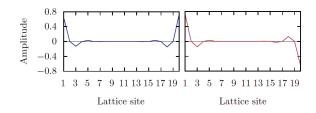


- Topological phases of matter
 - SSH Model: 1D lattice with staggered hoppings



Edge states form a non-local two-level system

- Topological phases of matter
 - SSH Model: 1D lattice with staggered hoppings



Edge states form a non-local two-level system $\Rightarrow \frac{\text{Long-range}}{\text{transfer}}$

$$H = -J' \sum_{i=1}^{M} c_{2i\sigma}^{\dagger} c_{2i-1\sigma} - J \sum_{i=1}^{M-1} c_{2i+1\sigma}^{\dagger} c_{2i\sigma} + H.c. + U \sum_{i=1}^{2M} n_{i\uparrow} n_{i\downarrow}$$

$$H = -J' \sum_{i=1,\sigma}^{M} c_{2i\sigma}^{\dagger} c_{2i-1\sigma} - J \sum_{i=1,\sigma}^{M-1} c_{2i+1\sigma}^{\dagger} c_{2i\sigma} + H.c. + U \sum_{i=1}^{2M} n_{i\uparrow} n_{i\downarrow}$$

On-site interaction

$$H = -J'\sum_{i=1,\sigma}^{M} c_{2i\sigma}^{\dagger} c_{2i-1\sigma} - J\sum_{i=1,\sigma}^{M-1} c_{2i+1\sigma}^{\dagger} c_{2i\sigma} + H.c. + U\sum_{i=1}^{2M} n_{i\uparrow} n_{i\downarrow}$$

▶ Strongly interacting regime: U > 4J

$$H = -J'\sum_{i=1,\sigma}^{M} c_{2i\sigma}^{\dagger} c_{2i-1\sigma} - J\sum_{i=1,\sigma}^{M-1} c_{2i+1\sigma}^{\dagger} c_{2i\sigma} + H.c. + U\sum_{i=1}^{2M} n_{i\uparrow} n_{i\downarrow}$$

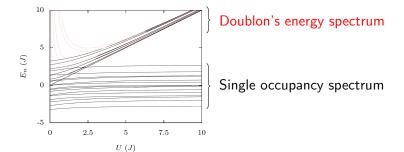
- ▶ Strongly interacting regime: U > 4J
- Doublons cannot decay due to energy conservation

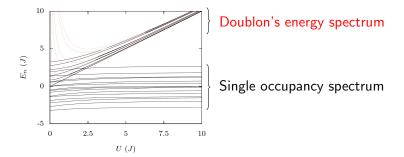
$$H = -J' \sum_{i=1,\sigma}^{M} c_{2i\sigma}^{\dagger} c_{2i-1\sigma} - J \sum_{i=1,\sigma}^{M-1} c_{2i+1\sigma}^{\dagger} c_{2i\sigma} + H.c. + U \sum_{i=1}^{2M} n_{i\uparrow} n_{i\downarrow}$$

- ▶ Strongly interacting regime: U > 4J
- Doublons cannot decay due to energy conservation
- Effective Hamiltonian for doublons?

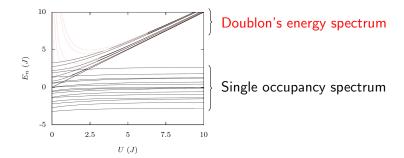
$$H = -J' \sum_{i=1,\sigma}^{M} c_{2i\sigma}^{\dagger} c_{2i-1\sigma} - J \sum_{i=1,\sigma}^{M-1} c_{2i+1\sigma}^{\dagger} c_{2i\sigma} + H.c. + U \sum_{i=1}^{2M} n_{i\uparrow} n_{i\downarrow}$$

- ▶ Strongly interacting regime: U > 4J
- Doublons cannot decay due to energy conservation
- Effective Hamiltonian for doublons?
- C. E. Creffield & G. Platero, PRB 69, 165312; PRL 105, 086804
- K. Winkler et al., Nature 441, 853-856
- S. Wall et al., Nat. Phys. 7, 114-118





We want to project out states we are not interested in



- We want to project out states we are not interested in
- ▶ Unitary transformation that block-diagonalizes the Hamiltonian, perturbatively in powers of J/U and J'/U up to first order.

$$H_{\text{eff}} = J'_{\text{eff}} \sum_{i=1}^{M} d_{2i}^{\dagger} d_{2i-1} + J_{\text{eff}} \sum_{i=1}^{M-1} d_{2i+1}^{\dagger} d_{2i} + H.c. + \sum_{i=1}^{2M} \mu_i n_i^d$$

$$H_{ ext{eff}} = J_{ ext{eff}}' \sum_{i=1}^{M} d_{2i}^{\dagger} d_{2i-1} + J_{ ext{eff}} \sum_{i=1}^{M-1} d_{2i+1}^{\dagger} d_{2i} + H.c. + \sum_{i=1}^{2M} \mu_{i} n_{i}^{d}$$
 dimer tight-binding

$$\begin{aligned} H_{\text{eff}} &= J_{\text{eff}}' \sum_{i=1}^{M} d_{2i}^{\dagger} d_{2i-1} + J_{\text{eff}} \sum_{i=1}^{M-1} d_{2i+1}^{\dagger} d_{2i} + H.c. + \sum_{i=1}^{2M} \mu_{i} n_{i}^{d} \\ & \text{dimer tight-binding} \end{aligned}$$
 effective chemical potential

$$H_{\text{eff}} = J'_{\text{eff}} \sum_{i=1}^{M} d_{2i}^{\dagger} d_{2i-1} + J_{\text{eff}} \sum_{i=1}^{M-1} d_{2i+1}^{\dagger} d_{2i} + H.c. + \sum_{i=1}^{2M} \mu_{i} n_{i}^{d}$$

Effective hoppings:
$$J'_{\rm eff}=2J'^2/U$$
 and $J_{\rm eff}=2J^2/U$

$$H_{\text{eff}} = J'_{\text{eff}} \sum_{i=1}^{M} d_{2i}^{\dagger} d_{2i-1} + J_{\text{eff}} \sum_{i=1}^{M-1} d_{2i+1}^{\dagger} d_{2i} + H.c. + \sum_{i=1}^{2M} \mu_{i} n_{i}^{d}$$

Effective hoppings:
$$J'_{\rm eff}=2J'^2/U$$
 and $J_{\rm eff}=2J^2/U$

$$\mu_i = U + \sum_{\langle i,j \rangle} J_{ij}^{\mathrm{eff}}$$
 Sum over first neighbours of site i

$$H_{\text{eff}} = J'_{\text{eff}} \sum_{i=1}^{M} d_{2i}^{\dagger} d_{2i-1} + J_{\text{eff}} \sum_{i=1}^{M-1} d_{2i+1}^{\dagger} d_{2i} + H.c. + \sum_{i=1}^{2M} \mu_{i} n_{i}^{d}$$

Effective hoppings: $J'_{\rm eff}=2J'^2/U$ and $J_{\rm eff}=2J^2/U$

For a finite lattice:

$$\mu_i = \begin{cases} \mu_{\text{bulk}} = J'_{\text{eff}} + J_{\text{eff}} + U & \text{if} \quad 1 < i < 2M \\ \mu_{\text{edge}} = J'_{\text{eff}} + U & \text{if} \quad i \in \{1, 2M\} \end{cases}$$

$$H_{\text{eff}} = J'_{\text{eff}} \sum_{i=1}^{M} d_{2i}^{\dagger} d_{2i-1} + J_{\text{eff}} \sum_{i=1}^{M-1} d_{2i+1}^{\dagger} d_{2i} + H.c. + \sum_{i=1}^{2M} \mu_{i} n_{i}^{d}$$

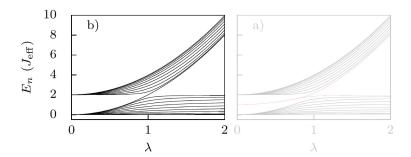
Effective hoppings: $J'_{\text{eff}} = 2J'^2/U$ and $J_{\text{eff}} = 2J^2/U$

For a finite lattice:

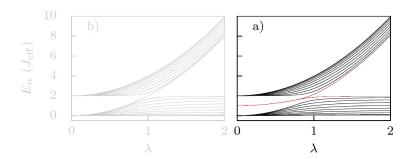
$$\mu_i = \begin{cases} \mu_{\text{bulk}} = J'_{\text{eff}} + J_{\text{eff}} + U & \text{if} \quad 1 < i < 2M \\ \mu_{\text{edge}} = J'_{\text{eff}} + U & \text{if} \quad i \in \{1, 2M\} \end{cases}$$

This forbids the presence of edge states for doublons

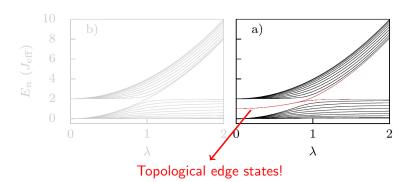
If we add a gate potential at the ends of the chain to compensate for the chemical potential difference, we recover the SSH model for doublons

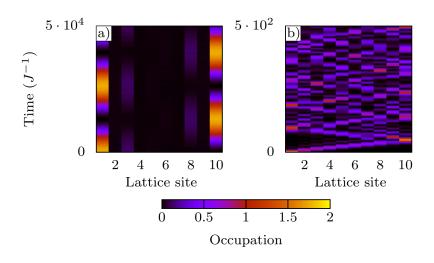


If we add a gate potential at the ends of the chain to compensate for the chemical potential difference, we recover the SSH model for doublons



If we add a gate potential at the ends of the chain to compensate for the chemical potential difference, we recover the SSH model for doublons





$$U = 16J$$
; a) $\lambda = 0.5$, b) $\lambda = 1$

$$H(t) = H_{hopp} + H_U + E \cos(\omega t) \sum_{i=1}^{2M} x_i (n_{i\uparrow} + n_{i\downarrow})$$

$$H(t) = H_{hopp} + H_U + E \cos(\omega t) \sum_{i=1}^{2NN} x_i (n_{i\uparrow} + n_{i\downarrow})$$

periodic driving

$$H(t) = H_{hopp} + H_U + E \cos(\omega t) \sum_{i=1}^{2M} x_i (n_{i\uparrow} + n_{i\downarrow})$$

For time-periodic Hamiltonians, H(t + T) = H(t), the fundamental solutions to the Schrödinger equation are of the form:

$$\psi(\mathbf{x}, t) = e^{-i\epsilon_n t} \phi_n(\mathbf{x}, t)$$

$$U(t_2, t_1) = e^{-iK(t_2)} e^{-iH_{eff}(t_2 - t_1)} e^{iK(t_1)}$$

$$H_{eff} = H^{[0]} + \frac{1}{\omega} H^{[1]} + \frac{1}{\omega^2} H^{[2]} + \cdots$$
(1)

M. Bukov, L. D'Alessio & A. Polkovnikov, Adv. Phys. 2015, Vol. 64, No. 2, 139-226

$$H(t) = H_{hopp} + H_U + E \cos(\omega t) \sum_{i=1}^{2NI} x_i (n_{i\uparrow} + n_{i\downarrow})$$

– Different effective Hamiltonians are obtained in the two regimes: $U\gg\omega$ and $\omega\gg U$

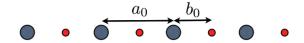
Only the hopping parameters become renormalized by the ac field:

Only the hopping parameters become renormalized by the ac field:

$$J_{eff}' \longrightarrow \mathcal{J}_0 \left(\frac{2Eb_0}{\omega} \right) J_{eff}'$$
 $J_{eff} \longrightarrow \mathcal{J}_0 \left(\frac{2E(a_0 - b_0)}{\omega} \right) J_{eff}'$

Only the hopping parameters become renormalized by the ac field:

$$J_{eff}' \longrightarrow \mathcal{J}_0 \left(\frac{2Eb_0}{\omega} \right) J_{eff}'$$
 $J_{eff} \longrightarrow \mathcal{J}_0 \left(\frac{2E(a_0 - b_0)}{\omega} \right) J_{eff}'$



Only the hopping parameters become renormalized by the ac field:

$$J_{eff}' \longrightarrow \mathcal{J}_0 \left(\frac{2Eb_0}{\omega} \right) J_{eff}'$$
 $J_{eff} \longrightarrow \mathcal{J}_0 \left(\frac{2E(a_0 - b_0)}{\omega} \right) J_{eff}'$

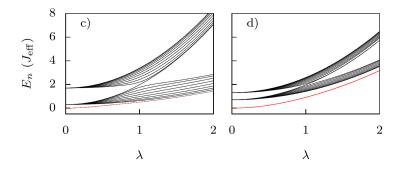
– The ac field allows to tune the ratio between hopping and $\Delta\mu$

Only the hopping parameters become renormalized by the ac field:

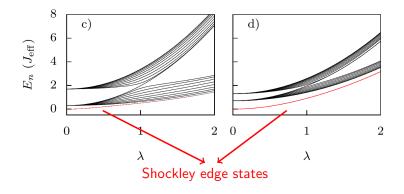
$$J_{eff}' \longrightarrow \mathcal{J}_0 \left(\frac{2Eb_0}{\omega} \right) J_{eff}'$$
 $J_{eff} \longrightarrow \mathcal{J}_0 \left(\frac{2E(a_0 - b_0)}{\omega} \right) J_{eff}'$

– The ac field allows to tune the ratio between hopping and $\Delta\mu$ \Longrightarrow It is able to induce Shockley-like edge states

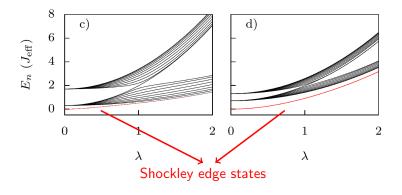
$$b_0 = a_0/2$$
; c) $\mathcal{J}_0(Ea_0/\omega) = 0.7$, d) $\mathcal{J}_0(Ea_0/\omega) = 0.3$



$$b_0 = a_0/2$$
; c) $\mathcal{J}_0(Ea_0/\omega) = 0.7$, d) $\mathcal{J}_0(Ea_0/\omega) = 0.3$



$$b_0 = a_0/2$$
; c) $\mathcal{J}_0(Ea_0/\omega) = 0.7$, d) $\mathcal{J}_0(Ea_0/\omega) = 0.3$



These edge states also form a non-local two level system and allow the long-range transfer

SSH model for doublons with tunable hoppings:

SSH model for doublons with tunable hoppings:

⇒ Control over the topology of the system:

SSH model for doublons with tunable hoppings:

⇒ Control over the topology of the system:

$$\left|\frac{\lambda^2 \mathcal{J}_0\big(\frac{2E}{\omega}b_0\big)}{\mathcal{J}_0\big(\frac{2E}{\omega}(a_0-b_0)\big)}\right| < 1 \quad \Leftrightarrow \quad \mathcal{Z} = \pi$$

SSH model for doublons with tunable hoppings:

⇒ Control over the topology of the system:

$$\left|\frac{\lambda^2 \mathcal{J}_0\big(\frac{2E}{\omega} b_0\big)}{\mathcal{J}_0\big(\frac{2E}{\omega} (a_0 - b_0)\big)}\right| < 1 \quad \Leftrightarrow \quad \mathcal{Z} = \pi$$

SSH model for doublons with tunable hoppings:

⇒ Control over the topology of the system:

$$\left| \frac{\lambda^2 \mathcal{J}_0\left(\frac{2E}{\omega}b_0\right)}{\mathcal{J}_0\left(\frac{2E}{\omega}(a_0 - b_0)\right)} \right| < 1 \quad \Leftrightarrow \quad \mathcal{Z} = \pi$$

$$\begin{array}{c} 20 \\ 15 \end{array}$$

A. Gómez-León & G. Platero PRL 110, 200403 (2013)

► Long-range transfer of particles can be produced in a dimer chain thanks to the presence of edge states

- Long-range transfer of particles can be produced in a dimer chain thanks to the presence of edge states
- With the HFE we can derive an effective Hamiltonian which includes both the interaction between particles and the periodic driving

- Long-range transfer of particles can be produced in a dimer chain thanks to the presence of edge states
- With the HFE we can derive an effective Hamiltonian which includes both the interaction between particles and the periodic driving
- ▶ Doublon edge states do not occur naturally in the dimer chain. However, they can be induced by different means:

- Long-range transfer of particles can be produced in a dimer chain thanks to the presence of edge states
- With the HFE we can derive an effective Hamiltonian which includes both the interaction between particles and the periodic driving
- ▶ Doublon edge states do not occur naturally in the dimer chain. However, they can be induced by different means:
 - Adding gate potentials → Topological transfer

- Long-range transfer of particles can be produced in a dimer chain thanks to the presence of edge states
- With the HFE we can derive an effective Hamiltonian which includes both the interaction between particles and the periodic driving
- ▶ Doublon edge states do not occur naturally in the dimer chain. However, they can be induced by different means:
 - Adding gate potentials \rightarrow Topological transfer
 - Driving the system with an AC field \rightarrow Shockley transfer

- Long-range transfer of particles can be produced in a dimer chain thanks to the presence of edge states
- With the HFE we can derive an effective Hamiltonian which includes both the interaction between particles and the periodic driving
- Doublon edge states do not occur naturally in the dimer chain. However, they can be induced by different means:
 - Adding gate potentials \rightarrow Topological transfer
 - Driving the system with an AC field \rightarrow Shockley transfer
 - Combination of both \rightarrow AC induced topological transfer

Thank you!