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» Floquet engineered systems

Coupling a static system to a periodic driving we are able to
realize experimentally many quantum-mechanical models

For example:
— Haldane model: G. Jotzu et al., Nature 515 237-240 (2014)

— Harper-Hofstadter model: M. Aidelsburguer et al., Nat. Phys.
11 162-166 (2015)
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— SSH Model: 1D lattice with staggered hoppings

|

Ratio between hoppings: A\ = Jj/
If X\ > 1 = Trivial phase
If A < 1 = Topological phase (Edge states)

P. Delplace, PRB 84, 195452
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— SSH Model: 1D lattice with staggered hoppings
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SSH-Hubbard model

M M-1 2M
H == _Jl Z C;.’-o_czi_]_a— - J Z Cg,'_i_lo.CZio' —'I_ HC + UZ n,'Tnu(
i=1,0 i=1,0 i=1

» Strongly interacting regime: U > 4J
» Doublons cannot decay due to energy conservation

» Effective Hamiltonian for doublons?

C. E. Creffield & G. Platero, PRB 69, 165312; PRL 105, 086804
K. Winkler et al., Nature 441, 853-856
S. Wall et al., Nat. Phys. 7, 114-118
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10

} Doublon’s energy spectrum

En (J)

1 Single occupancy spectrum
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» We want to project out states we are not interested in

» Unitary transformation that block-diagonalizes the
Hamiltonian, perturbatively in powers of J/U and J'/U up to
first order.
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M-1
Heﬁ_ ffzdz,dZ 1+Jefde21+1d21+HC —|—Zul
i=1 =1 i—1
dimer tight-binding effective chemical

potential
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Schrieffer-Wolff transformation (SWT)

M—-1
Heﬁ_ GHZdZIdZI 1+Jeff Z d2l+1d21+HC + ZM,
i=1 i=1 i=1

Effective hoppings: J/ g = 2J?/U and Jog = 2J%/U

For a finite lattice:

) Poulk = Jog + Jeg + U if 1 <i<2M
P edge = Jig + U if ie{1,2M}

€

This forbids the presence of edge states for doublons
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If we add a gate potential at the ends of the chain to compensate
for the chemical potential difference, we recover the SSH model for
doublons

Topological edge states!



Topological long-range transfer
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Floquet theory and HFE

2M
H(t) = Hhopp + Hu + E cos(wt) in(nm + njy)
i=1

For time-periodic Hamiltonians, H(t + T) = H(t), the
fundamental solutions to the Schrodinger equation are of the form:

D(x,t) = e pn(x, t)
U(tr, t1) = o~ K(t2) g—iHerr (t2—11) giK(t1)
w w

M. Bukov, L. D'Alessio & A. Polkovnikov, Adv. Phys. 2015, Vol.
64, No. 2, 139-226



Floquet theory and HFE

2M
H(t) = Hhopp + Hu + E cos(wt) in(niT + njy)
i=1

— Different effective Hamiltonians are obtained in the two
regimes: U > w and w > U
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Effective Hamiltonian, regime U > w > J,J'

Only the hopping parameters become renormalized by the ac field:
2Ebg
Jeir — Jo <w> ot

2E(ag — b
Jerf — Jo <((Zd0)>Jeff

— The ac field allows to tune the ratio between hopping and Ap
= It is able to induce Shockley-like edge states
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Effective Hamiltonian, regime U > w > J,J'
by = 30/2; C) jo(an/w) =0.7, d) jo(an/w) =03

En (Jef'f)
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Shockley edge states

These edge states also form a non-local two level system and allow
the long-range transfer



AC fields + gate potentials
SSH model for doublons with tunable hoppings:



AC fields + gate potentials

SSH model for doublons with tunable hoppings:
= Control over the topology of the system:



AC fields + gate potentials

SSH model for doublons with tunable hoppings:
= Control over the topology of the system:

A>T (3 bo)

1 Z =
Jo(2E (a0 — bo)) = “ "




AC fields + gate potentials

SSH model for doublons with tunable hoppings:
= Control over the topology of the system:
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AC fields + gate potentials

SSH model for doublons with tunable hoppings:
= Control over the topology of the system:
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A. Gémez-Leén & G. Platero PRL 110, 200403 (2013) -
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Conclusions

» Long-range transfer of particles can be produced in a dimer
chain thanks to the presence of edge states

» With the HFE we can derive an effective Hamiltonian which
includes both the interaction between particles and the
periodic driving

> Doublon edge states do not occur naturally in the dimer
chain. However, they can be induced by different means:

— Adding gate potentials — Topological transfer
— Driving the system with an AC field — Shockley transfer

— Combination of both — AC induced topological transfer
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